Skip to main content
Log in

Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effect of different farming systems (cage, pond) upon digestive enzyme activities of Nile tilapia was evaluated. Juvenile Nile tilapia (87.61 ± 1.52 g) were simultaneously cultured in pond and cage systems during 90 days. Cages used nutritional biphasic plan (35 and 32 % crude protein—CP feeds) and ponds used nutritional triphasic plan (35, 32 and 28 % CP feeds). Biometric measurements were monthly performed for adjustments in feeding regimes and removal of intestine tissues to evaluate the performance of enzyme activities. Total proteolytic, amylase and lipase activities were not statistically different between the treatments throughout the periods analyzed (31, 63 and 94 days of culture). However, trypsin and chymotrypsin activities were higher with 31 and 63 days of culture in fish from pond system, suggesting that natural food may have influenced these activities. A positive correlation was observed between the recommended concentration of essential amino acids for Nile tilapia and specific aminopeptidases activity in fish cage system. Substrate–SDS–PAGE revealed 12 active proteolytic bands in both systems. However, integrated density (ID) values were higher in the bands of ponds. Specimens of either cage or pond exhibited five bands of amylolytic activity. Fish from cage and pond systems showed the highest values of ID within 31 days of cultivation. In this study, the complexity of digestive functions could be verified for animals maintained under commercial conditions. Some of the assessed enzymes may show adaptations of their activities and/or expression that allow the fish to achieve a more efficient nutrient assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aryee ANA, Simpson BK, Villalonga R (2007) Lipase fraction from the viscera of grey mullet Mugil cephalus isolation, partial purification and some biochemical characteristics. Enzyme Microb Technol 40:394–402

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α and β. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York

    Google Scholar 

  • Beveridge MCM, Baird DJ (2000) Diet, feeding and digestive physiology. In: Beveridge MCM, Mcandrew BJ (eds) Tilapias: biology and exploitation. Kluwer, Dordrecht

    Chapter  Google Scholar 

  • Bezerra RS, Lins EJF, Alencar RB, Paiva PMG, Chaves MEC, Coelho LCBB, Carvalho LB Jr (2005) Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochem 40:1829–1834

    Article  CAS  Google Scholar 

  • Bicudo CE, Menezes M (2006) Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições, 2nd edn. RIMA, São Carlos

    Google Scholar 

  • Bowen SH (1982) Feeding digestion and growth—qualitative considerations. In: Pullin RSV, Lowe-Mcconnell RH (eds) The biology and culture of tilapias. ICLARM (ICLARM Conference Proceedings), Manila, pp 141–156

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brusca RC, Brusca GJ (2007) Invertebrados, 2nd edn. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Buarque DS, Castro PF, Santos FMS, Amaral IPG, Oliveira SM, Alves KB, Carvalho LB Jr, Bezerra RS (2009a) Digestive proteinases and peptidases in the hepatopancreas of the southern brown shrimp (Farfantepenaeus subtilis) in two sub-adult stages. Aquac Nutr 16:359–369

    Article  Google Scholar 

  • Buarque DS, Castro PF, Santos FMS, Lemos D, Carvalho LB Jr, Bezerra RS (2009b) Digestive peptidases and proteinases in the midgut gland of the pink shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae). Aquac Res 40:861–870

    Article  CAS  Google Scholar 

  • Cara B, Moyano FJ, Zambonino JL, Fauvel C (2007) Trypsin and chymotrypsin as indicators of nutritional status of post-weaned sea bass larvae. J Fish Biol 70:1798–1808

    Article  CAS  Google Scholar 

  • Castro PF, Freitas ACV Jr, Santana WM, Costa HMS, Carvalho LB Jr, Bezerra RS (2012) Comparative study of amylases from the midgut gland of three species of penaeid shrimp. J Crustac Biol 32:607–613

    Article  Google Scholar 

  • Celik E (2012) Tilapia culture review. Master Thesis, Norwegian University of Life Sciences

  • El-Sayed AFM (2006) Tilapia culture. CABI Publishing, Cambridge

    Book  Google Scholar 

  • Fagbenro OA (2000) Validation of the essential amino acid requirements of Nile tilapia Oreochromis niloticus (Linneu 1758), assessed by the ideal protein concept. In: Fitzsimmons K, Filho JC (eds) Tilapia culture in the 21st century. Proceedings from the fifth international symposium on Tilapia aquaculture, Rio de Janeiro, Brazil. American Tilapia Association, Charles Town, West Virginia, and ICLARM, Penang, Malaysia, pp 154–156

  • Falcón-Hidalgo B, Forrellat-Barrios A, Farnés OC, Hernández KU (2011) Digestive enzymes of two freshwater fishes (Limia vittata and Gambusia punctata) with different dietary preferences at three developmental stages. Comp Biochem Phys B 158:136–141

    Article  Google Scholar 

  • Ferron A, Leggett WC (1994) An appraisal of condition measures for marine fish larvae. Adv Mar Biol 30:217–303

    Article  Google Scholar 

  • Fitzsimmons K (1997) Introduction to tilapia nutrition. In: Fitzsimmons K (ed) Tilapia aquaculture. Northeast Regional Agricultural Engineering Service, New York

    Google Scholar 

  • Furuya WM (2010) Tabelas Brasileiras para a Nutrição de Tilápias. GFM, Toledo

    Google Scholar 

  • Garcia-Carreño FL, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69

    Article  PubMed  Google Scholar 

  • Hickman CP Jr, Roberts LS, Larson A (2001) Animais Pseudocelomados. Princípios integrados de Zoologia, 11th edn. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Keshavanath P, Manjappa K, Gangadhara B (2002) Evaluation of carbohydrate rich diets through common carp culture in manured tanks. Aquac Nutr 8:169–174

    Article  Google Scholar 

  • Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture 200:181–201

    Article  CAS  Google Scholar 

  • Kubitza F, Kubitza LMM (2000) Qualidade da água, sistemas de cultivo, planejamento da produção, manejo nutricional e alimentar e sanidade. Panor Aqüic 59:44–53

    Google Scholar 

  • Kumar S, Garcia-Carreño FL, Chakrabarti R, Toro MAN, Córdova-Murueta JH (2007) Digestive proteases of three carps Catla catla, Labeo rohita and Hypophthalmichthys molitrix: partial characterization and protein hydrolysis efficiency. Aquac Nutr 13:381–388

    Article  CAS  Google Scholar 

  • Kuz’mina VV, Golovanova IL (2004) Contribution of prey proteinases and carbohydrases in fish digestion. Aquaculture 234:347–360

    Article  Google Scholar 

  • Kuz’mina VV, Golovanova IL, Izvekova GI (1996) Influence of temperature and season on some characteristics of intestinal mucosa carbohydrases in six freshwater fishes. Comp Biochem Phys B 113:255–260

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Le Moullac G, VanWormhoudt A (1994) Adaptation of digestive enzymes to dietary protein, carbohydrate and fibre levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (Crustacea, Decapoda). Aquat Living Resour 7:203–210

    Article  Google Scholar 

  • Liti DM, Mugo RM, Munguti JM, Waidbacher H (2006) Growth and economic performance of Nile tilapia (Oreochromis niloticus L.) fed on three brans (maize, wheat and rice) in fertilized ponds. Aquac Nutr 12:239–245

    Article  CAS  Google Scholar 

  • Lowe-Mcconnell RH (2000) The role of tilapias in ecosystems. In: Beveridge MCM, Mcandrew BJ (eds) Tilapias: biology and exploitation. Kluwer, Dordrecht, pp 129–162

    Chapter  Google Scholar 

  • Luz RK, Zaniboni-Filho E (2001) Utilização de diferentes dietas na primeira alimentação do mandi amarelo (Pimelodus maculatus, Lacépéde). Acta Sci 23:483–489

    Google Scholar 

  • Muhlia-Almazán A, García-Carreño L, Sánchez-Paz JA, Yepiz-Plascencia G, Peregrino-Uriarte AB (2003) Effects of dietary protein on the activity and mRNA level of trypsin in the midgut gland of the white shrimp Penaeus vannamei. Comp Biochem Physiol B 135:373–383

    Article  PubMed  Google Scholar 

  • Nelson DL, Cox MM (2014) Princípios de Bioquímica de Lehninger. Artmed, Porto Alegre

    Google Scholar 

  • Niiyama T, Toyohara H (2011) Widespread distribution of celulase and hemicellulase activities among aquatic invertebrates. Fish Sci 77:649–655

    Article  CAS  Google Scholar 

  • Pedrazzani AS, Molento CFM, Carneiro PCF, Fernandes-de-Castilho M (2007) Senciência e bem-estar de peixes: uma visão de futuro do mercado consumidor. Panor Aquic 17:24–29

    Google Scholar 

  • Perera E, Rodríguez-Viera L, Perdomo-Morales R, Montero-Alejo V, Moyano FJ, Martínez-Rodríguez G, Mancera JM (2015) Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): from molecules to physiology. J Comp Phys B 185:17–35

    Article  CAS  Google Scholar 

  • Peres H, Oliva-Teles A (2009) The optimum dietary amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture 296:81–86

    Article  CAS  Google Scholar 

  • Perez-Jimenez A, Cardenete G, Morales AE, Garcia-Alcazar A, Abellan E, Hidalgo MC (2009) Digestive enzymatic profile of Dentex dentex and response to different dietary formulations. Comp Biochem Phys A 154:157–164

    Article  Google Scholar 

  • Philippart J, Ruwet J (1982) Ecology and distribution of tilapias. In: Pullin RSV, Lowe-Mcconnell RH (eds) The biology and culture of Tilapias. ICLARM Conference Proceedings No 7, ICLARM, Manila, Philippines, pp 15–59

  • Rasband WS (2012) ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/, 1997–2012

  • Ray AK, Roy T, Mondala S, Ringø E (2010) Identification of gut-associated amylase, cellulose and protease-producing bacteria in three species of Indian major carps. Aquac Res 41:1462–1469

    CAS  Google Scholar 

  • Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179:465–473

    Article  CAS  Google Scholar 

  • Saha S, Roy RN, Sem SK, Ray AK (2006) Characterization of celulase-producing bacteria from the digestive tract of tilpia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquac Res 37:380–388

    Article  CAS  Google Scholar 

  • Sampaio ALA, Goulart E (2011) Ciclídeos neotropicais: ecomorfologia trófica. Oecol Aust 15:775–798

    Article  Google Scholar 

  • Santiago CB, Lowell RT (1988) Amino acid requirements for growth of Nile tilapia. J Nutr 118:1540–1546

    CAS  PubMed  Google Scholar 

  • Santos JF, Castro PF, Leal ALG, Freitas ACV Jr, Lemos D, Carvalho LB Jr, Bezerra RS (2013) Digestive enzyme activity in juvenile Nile tilápia (Oreochromis niloticus, L.) submitted to different dietary levels of shrimp protein hydrolysate. Aquac Int 21:563–577

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Tengjaroenkul B, Smith BJ, Caceci T, Smith SA (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 182:317–327

    Article  CAS  Google Scholar 

  • Woynarovich E, Horváth L (1983) A propagação artificial de peixes de águas tropicais: manual de extensão. FAO/CODEVASF/CNPq, Brasília

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Albérico Espírito Santo, João Virgínio and Instituto Agronômico de Pernambuco for their technical assistance. This study was supported by the Financiadora de Estudos e Projetos (FINEP/RECARCINE), Ministério da Pesca e Aquicultura (MPA), Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Conselho Nacional de Pesquisa e Desenvolvimento Científico (CNPq), Fundação de Apoio à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Petróleo do Brasil S/A (PETROBRAS) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). D. Lemos acknowledges funding from Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP) and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranilson Souza Bezerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.F., Soares, K.L.S., Assis, C.R.D. et al. Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems. Fish Physiol Biochem 42, 1259–1274 (2016). https://doi.org/10.1007/s10695-016-0215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0215-5

Keywords

Navigation