Skip to main content
Log in

Oxygen stress: impact on innate immune system, antioxidant defence system and expression of HIF-1α and ATPase 6 genes in Catla catla

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Catla catla catla (2.28 ± 0.1 g) were exposed to six different levels of dissolved oxygen: 1 (DO-1), 3 (DO-3), 5 (DO-5), 7 (DO-7), 9 (DO-9) and 11 (DO-11) mg/L. DO-5 served as control. In DO-1 and DO-3, the number of red blood cells (RBC), lysozyme, respiratory burst activity and nitric oxide synthase were significantly (p < 0.05) lower compared to the control one. In DO-7 and DO-9, RBC and lysozyme were significantly (p < 0.05) higher compared to the control one. Thiobarbituric acid reactive substances was significantly (p < 0.05) higher in catla exposed at low (1 and 3 mg/L) and high (9 and 11 mg/L) dissolved oxygen compared to others. In muscles and hepatopancreas, reduced glutathione was significantly (p < 0.05) higher in DO-5 and DO-7 and in gills of DO-5 compared to others after 1 h. In muscles, glutathione S-transferase (GST) was significantly (p < 0.05) lower in DO-5 and DO-7 compared to others. In hepatopancreas, GST and glutathione peroxidise (GPx) were significantly (p < 0.05) higher in DO-1 and DO-3 compared to others. In gills, GPx was higher in DO-9 and DO-11 after 48 h. In brain, hypoxia-inducible factor (HIF)-1α mRNA level was induced in DO-1 and DO-3 compared to others after 1 h of exposure. In gills and hepatopancreas, HIF-1α mRNA level was significantly (p < 0.05) higher in DO-1 compared to others after 1 h. The ATPase 6 mRNA level was significantly (p < 0.05) higher in brain and hepatopancreas of DO-1 after 1 h and in gills and hepatopancreas of DO-3 and DO-9, respectively, after 48 h compared to others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander JB, Ingram GA (1992) Noncellular nonspecific defence mechanisms of fish. Annu Rev Fish Dis 2:249–279

    Article  Google Scholar 

  • Anderson DP, Siwicki AK (1995) Basic haematology and serology for fish health programs. In: Shariff M, Arthur JR, Subasinghe RP (eds) Diseases in Asian Aquaculture II. Manila, Fish Health Section, Asian Fisheries Society

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  • Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37:4587–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhor VM, Raghuram N, Sivakami S (2004) Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol 36:89–97

    Article  CAS  PubMed  Google Scholar 

  • Bowden TJ (2008) Modulation of the immune system of fish by their environment. Fish Shellfish Immunol 25:373–383

    Article  CAS  PubMed  Google Scholar 

  • Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402

    Article  Google Scholar 

  • Busk M, Boutilier RG (2005) Metabolic arrest and its regulation in anoxic eel hepatocytes. Physiol Biochem Zool 78:926–936

    Article  CAS  PubMed  Google Scholar 

  • Coles BF, Kadlubar FF (2003) Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? BioFactors 17:115–130

    Article  CAS  PubMed  Google Scholar 

  • D’Avanzo C, Kremer JN (1994) Diel oxygen dynamics and anoxic events in an eutrophic estuary of Waquoit Bay, Massachusetts. Estuaries 17:131–139

    Article  Google Scholar 

  • Devasena T, Lalitha S, Padma K (2001) Lipid peroxidation, osmotic fragility and antioxidant status in children with acute post-streptococcal glomerulonephritis. Clin Chim Acta 308:155–161

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Dani V, Dhawan DK (2005) Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem Biol Interact 156:131–140

    Article  CAS  PubMed  Google Scholar 

  • Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98:1993–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JB (1990) Ecological, evolutionary, and physical factors influencing aquatic animal respiration. Am Zool 30:137–146

    Article  Google Scholar 

  • Grecay PA, Stierhoff KL (2002) A device for simultaneously controlling multiple treatment levels of dissolved oxygen in laboratory experiments. J Exp Mar Biol Ecol 280:53–62

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Henderson CJ, Smith AG, Ure J, Brown K, Bacon EJ, Wolf CR (1998) Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci USA 95:5275–5280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermes-Lima M (2004) Oxygen in biology and biochemistry: role of free radicals. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Wiley, New Jersey, pp 319–368

    Google Scholar 

  • Hermes-Lima M, Zenteno-Savın T (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C: Toxicol Pharmacol 133:537–556

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Huttula T, Peltonen A, Bilaletdin Ä, Saura M (1992) The effects of climatic change on lake ice and water temperature. Aqua Fenn 22:129–142

    Google Scholar 

  • Indian Council of Agricultural Research (2013) Handbook of Fisheries And aquaculture, 2nd edn. Indian Council of Agricultural Research, New Delhi, p 1116

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Climate change 2007: the scientific basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Itoi S, Kinoshita S, Kikuchi K, Watabe S (2003) Changes of carp F0F1-ATPase in association with temperature acclimation. Am J Physiol Regul Integr Comp Physiol 284:R153–R163

    Article  CAS  PubMed  Google Scholar 

  • Janssens BJ, Childress JJ, Baguet F, Rees J-F (2000) Reduced enzymatic antioxidative defense in deep-sea fish. J Exp Biol 203:3717–3725

    CAS  PubMed  Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  CAS  PubMed  Google Scholar 

  • Jones OTG, Hancock JT, Henderson LM (1991) Oxygen radical production by transformed B lymphocytes. Mol Aspects Med 12:87–92

    Article  CAS  PubMed  Google Scholar 

  • Koner BC, Banerjee BD, Ray A (1997) Effects of in vivo generation of oxygen free radicals on immune responsiveness in rabbits. Immunol Lett 59:127–131

    Article  CAS  PubMed  Google Scholar 

  • Krumschnabel G, Schwarzbaum PJ, Biasi C, Dorigatti M, Wieser W (1997) Effects of energy limitation on Ca2+ and K+ homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes. Am J Physiol Regul Integr Comp Physiol 273:R307–R316

    CAS  Google Scholar 

  • Kvamme BO, Gadan K, Finne-Fridell F, Niklasson L, Sundh H, Sundell K, Taranger GL, Evensen Ø (2013) Modulation of innate immune responses in Atlantic salmon by chronic hypoxia-induced stress. Fish Shellfish Immunol 34:55–65

    Article  CAS  PubMed  Google Scholar 

  • Law SH, Wu RS, Ng PK, Richard MK, Kong RY (2006) Cloning and expression analysis of two distinct HIF-alpha isoforms—gcHIF-1alpha and gcHIF-4alpha—from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol 7:15. doi:10.1186/1471-2199-7-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee D-U, Kang YJ, Park MK, Lee YS, Seo HG, Kim TS, Kim CH, Chang KC (2003) Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-α, iNOS, and IL-12 production in LPS-stimulated macrophages. Life Sci 73:1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Article  CAS  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006) Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol B: Biochem Mol Biol 144:283–289

    Article  Google Scholar 

  • Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M (2001) Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol 280:R100–R107

    CAS  PubMed  Google Scholar 

  • Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2005a) Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int J Biochem Cell Biol 37:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB (2005b) Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol 37:1670–1680

    Article  CAS  PubMed  Google Scholar 

  • Magnuson JJ, Crowder LB, Medvick PA (1979) Temperature as an ecological resource. Am Zool 19:331–343

    Article  Google Scholar 

  • Mallya YJ (2007) The effect of dissolved oxygen on fish growth in aquaculture. Kingolwira National Fish Farming Centre, Fisheries Division Ministry of Natural Resources and Tourism, Tanzania

  • Martinez-Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisher 15:75–88

    Article  Google Scholar 

  • Martinovic D, Villeneuve DL, Kahl MD, Blake LS, Brodin JD, Ankley GT (2009) Hypoxia alters gene expression in the gonads of zebrafish (Danio rerio). Aquat Toxicol 95:258–272

    Article  CAS  PubMed  Google Scholar 

  • Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586

    Article  CAS  PubMed  Google Scholar 

  • Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ (1984) Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney: possible implications in analgesic nephropathy. Biochem Pharmacol 33:1801–1807

    Article  CAS  PubMed  Google Scholar 

  • Montgomery DC (1984) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  • Ni M, Wen H, Li J, Chi M, Bu Y, Ren Y, Zhang M, Song Z, Ding H (2014) The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress. Fish Shellfish Immunol 36:325–335

    Article  CAS  PubMed  Google Scholar 

  • Oehlers LP, Perez AN, Walter RB (2007) Detection of hypoxia-related proteins in medaka (Oryzias latipes) brain tissue by difference gel electrophoresis and de novo sequencing of 4-sulfophenyl isothiocyanate-derivatized peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comp Biochem Physiol C: Toxicol Pharmacol 145:120–133

    Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Olsvik PA, Kristensen T, Waagbø R, Rosseland BO, Tollefsen KE, Baeverfjord G, Berntssen MHG (2005) mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comp Biochem Physiol C: Toxicol Pharmacol 141:314–323

    Article  CAS  Google Scholar 

  • Padilla PA, Roth MB (2001) Oxygen deprivation causes suspended animation in the zebrafish embryo. Proc Natl Acad Sci USA 98:7331–7335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pamplona R, Costantini D (2011) Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol 301:R843–R863

    Article  CAS  PubMed  Google Scholar 

  • Pompella A, Visvikis A, Paolicchi A, deTata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503

    Article  CAS  PubMed  Google Scholar 

  • Rees BB, Sudradjat FA, Love JW (2001) Acclimation to hypoxia increases survival time of zebrafish, Danio rerio, during lethal hypoxia. J Exp Zool 289:266–272

    Article  CAS  PubMed  Google Scholar 

  • Rissanen E, Tranberg HK, Sollid J, Nilsson GE, Nikinmaa M (2006) Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol 209:994–1003

    Article  CAS  PubMed  Google Scholar 

  • Ritola O, Livingstone DR, Peters LD, Lindström-Seppä P (2002a) Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water. Aquaculture 210:1–19

    Article  CAS  Google Scholar 

  • Ritola O, Tossavainen K, Kiuru T, Lindstrom-Seppa P, Molsa H (2002b) Effects of continuous and episodic hyperoxia on stress and hepatic glutathione levels in one-summer-old rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 18:159–164

    Article  Google Scholar 

  • Rombout J, Huttenhuis HBT, Picchietti S, Scapigliati G (2005) Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol 19:441–455

    Article  CAS  PubMed  Google Scholar 

  • Rytkönen KT, Prokkola JM, Salonen V, Nikinmaa M (2014) Transcriptional divergence of the duplicated hypoxia-inducible factor alpha genes in zebrafish. Gene 541:60–66

    Article  PubMed  Google Scholar 

  • Salas-Leiton E, Cánovas-Conesa B, Zerolo R, López-Barea J, Cañavate JP, Albama J (2009) Proteomics of juvenile Senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. Mar Biotechnol 11:473–487

    Article  CAS  PubMed  Google Scholar 

  • Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239

    Article  CAS  Google Scholar 

  • Scapigliati G, Scalia D, Marras A, Meloni S, Mazzini M (1999) Immunoglobulin levels in the teleost sea bass Dicentrarchus labrax (L.) in relation to age, season, and water oxygenation. Aquaculture 174:207–212

    Article  CAS  Google Scholar 

  • Schrøder MB, Villena AJ, Jørgensen TØ (1998) Ontogeny of lymphoid organs and immunoglobulin producing cells in Atlantic cod (Gadus morhua L.). Dev Comp Immunol 22:507–517

    Article  PubMed  Google Scholar 

  • Secor DH, Gunderson TE (1998) Effects of hypoxia and temperature on survival, growth, and respiration of juvenile Atlantic sturgeon, Acipenser oxyrinchus. Fish Bull 96:603–613

    Google Scholar 

  • Shams I, Nevo E, Avivi A (2005) Ontogenetic expression of erythropoietin and hypoxia-inducible factor-1 alpha genes in subterranean blind mole rats. FASEB J 19:307–309

    CAS  PubMed  Google Scholar 

  • Sies H (1991) Role of reactive oxygen species in biological processes. Klin Wochenschr 69:965–968

    Article  CAS  PubMed  Google Scholar 

  • Stierhoff KL, Targett TE, Grecay PA (2003) Hypoxia tolerance of the mummichog: the role of access to the water surface. J Fish Biol 63:580–592

    Article  Google Scholar 

  • Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1733

    CAS  PubMed  Google Scholar 

  • Ton C, Stamatiou D, Liew C-C (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13:97–106

    Article  CAS  PubMed  Google Scholar 

  • Tripathi NK, Latimer KS, Burnley VV (2004) Hematologic reference intervals for koi (Cyprinus carpio), including blood cell morphology, cytochemistry, and ultrastructure. Vet Clin Pathol 33:74–83

    Article  PubMed  Google Scholar 

  • Vig E, Nemcsok J (1989) The effects of hypoxia and paraquat on the superoxide dismutase activity in different organs of carp, Cyprinus carpio L. J Fish Biol 35:23–25

    Article  CAS  Google Scholar 

  • Watts M, Munday BL, Burke CM (2001) Immune responses of teleost fish. Aust Vet J 79:570–574

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, You F, Wen A, Ma D, Zhang P (2014) Physiological and morphological effects of severe hypoxia, hypoxia and hyperoxia in juvenile turbot (Scophthalmus maximus L.). Aquac Res. doi:10.1111/are.12483

    Google Scholar 

  • Zhao S, Wu J (2013) Hypoxia inducible factor stabilization as a novel strategy to treat anemia. Curr Med Chem 20:2697–2711

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Indian Council of Agricultural Research, ICAR, New Delhi, for providing financial support in the form of NFBSFARA project (AS-2001/2010-11) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Sharma, J., Ahmad, T. et al. Oxygen stress: impact on innate immune system, antioxidant defence system and expression of HIF-1α and ATPase 6 genes in Catla catla . Fish Physiol Biochem 42, 673–688 (2016). https://doi.org/10.1007/s10695-015-0168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0168-0

Keywords

Navigation