Skip to main content
Log in

c-myc in whitefish (Coregonus lavaretus): structure, expression, and insights into possible posttranscriptional regulatory mechanism

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

c-myc has a crucial function in growth control, differentiation, and apoptosis of vertebrate cells. Despite the important role of c-myc in mediating the biological effects, studies of c-myc gene expression and factors that control it in organisms other than mammals, such as fish, have been rare. In the current study, we asked whether c-myc mRNA of whitefish, a feasible organism for pollution monitoring in aquatic systems and a model in toxicological research, contains activity sites for regulatory motifs in its 5′- and 3′-UTRs, similar to those found in mammals. We were particularly interested in whether miRNA-34, a known negative regulator of c-myc’s in mammals, is able to regulate c-myc in fish. To answer these questions, we determined the mRNA sequence of whitefish c-myc and inferred the structure of the protein that it codes for. We found that the active sites of mRNA and structures of the inferred c-myc protein are similar to those found in mammals and other fish. Remarkably, levels of c-myc mRNA expression were very high in ovaries compared to other tissues of whitefish, thus corroborating previous data in fish. Using bioinformatic searches on c-myc 3′-UTR, we confirmed the presence of two miRNA-34a (miR-34a) response elements. Luciferase reporter assay showed that activity of reporters containing either the miR response elements or entire c-myc 3′-UTR was significantly reduced (p < 0.001) by ectopic expression of miR-34a. Therefore, we further investigated possible involvement of miR-34a in c-myc gene silencing by profiling the expression of both genes in livers of whitefish treated for 8, 24, 48 h with MC-LR, a potent c-myc inducer in mammals. Although the difference was only significant at p = 0.08, the expression of c-myc mRNA in challenged whitefish after 24 h of the treatment was notably higher than that in livers of control fish. Concurrently, we noticed slight but significant up-regulation of miR-34a after 24 and 48 h of the challenge (p < 0.05); however, we found no significant correlation of the c-myc mRNA levels and miR-34a expression. Together, these results suggest that miR-34a might regulate c-myc gene expression in whitefish liver; however, their involvement in MC-LR hepatotoxicity should be clarified in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arukwe A (2006) Toxicological housekeeping genes: do they really keep the house? Environ Sci Technol 40:7944–7949

    Article  CAS  PubMed  Google Scholar 

  • Biggar KK, Wu CW, Storey KB (2014) High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop reverse transcription polymerase chain reaction. Anal Biochem 462:32–34

    Article  CAS  PubMed  Google Scholar 

  • Bjourson AJ, Cooper JE (1992) Band-stab PCR: a simple technique for the purification of individual PCR products. Nucleic Acids Res 20:4675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed Central  PubMed  Google Scholar 

  • Brzuzan P, Woźny M, Ciesielski S, Łuczyński MK, Góra M, Kuźmiński H, Dobosz S (2009) Microcystin-LR induced apoptosis expression mRNA of p53 and cdkn1a in liver of whitefish (Coregonus lavaretus L.). Toxicon 54:170–183

    Article  CAS  PubMed  Google Scholar 

  • Brzuzan P, Woźny M, Wolińska L, Piasecka A (2012) Expression profiling in vivo demonstrates rapid changes in liver microRNA levels of whitefish (Coregonus lavaretus) following microcystin-LR exposure. Aquat Toxicol 122–123:188–196

    Article  PubMed  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobbold LC, Spriggs KA, Haines SJ, Dobbyn HC, Hayes C, de Moor CH, Lilley KS, Bushell M, Willis AE (2008) Identification of internal ribosome entry segment (IRES)-transacting factors for the Myc family of IRESs. Mol Cell Biol 28:40–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conacci-Sorrell M, McFerrin L, Eisenman RN (2014) An overview of MYC and its interactome. Cold Spring Harb Perspect Med 4:a014357

    Article  PubMed  Google Scholar 

  • Dubik D, Shiu RP (1988) Transcriptional regulation of c-myc oncogene expression by estrogen in hormone-responsive human breast cancer cell. J Biol Chem 263:12705–12708

    CAS  PubMed  Google Scholar 

  • Ernst B, Hoeger SJ, O’Brien E, Dietrich DR (2007) Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens. Aquat Toxicol 82:15–26

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Weber GJ, Sepulveda MS (2014) Fishing for microRNAs in Toxicology. In: Sahu SC (ed) MicroRNAs in toxicology and medicine. Wiley, Chichester, pp 49–75

    Google Scholar 

  • Futami K, Komiya T, Zhang H, Okamoto N (2001) Differential expression of max and two types of c-myc genes in a tetraploid fish, the common carp (Cyprinus carpio). Gene 269:113–119

    Article  CAS  PubMed  Google Scholar 

  • Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F, Tyner AL (2001) Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci USA 98:4510–4515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gearhart J, Pashos EE, Prasad MK (2007) Pluripotency redux—advances in stem-cell research. N Engl J Med 357:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Gehringer MM (2004) Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Lett 557:1–8

    Article  CAS  PubMed  Google Scholar 

  • Glorian V, Maillot G, Poles S, Iacovoni JS, Favre G, Vagner S (2011) HuR-dependent loading of miRNA RISC to the mRNA encodnig the Ras-related small GTP-ase RhoB controls its translation during UV-induced apoptosis. Cell Death Differ 18:1692–1701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199

    Article  CAS  PubMed  Google Scholar 

  • Huang HY, Chien CH, Jen KH, Huang HD (2006) RegRNA: a regulatory RNA motifs and elements finder. Nucleic Acids Res 34:W429–W434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazuń K, Siwicki AK (2012) Propiscin—a safe new anaesthetic for fish. Arch Pol Fish 20:173177

    Google Scholar 

  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xie P, Li G, Hao L, Xiong Q (2009) In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun, and c-myc) in liver kidney and testis of male wistar rats injected i.v. with toxins. Toxicon 53:169–175

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liang C, Wong K, Jin K, Zhang Z (2014) Inferring probabilistic miRNA–mRNA interaction signatures in cancers: a role-switch approach. Nucleic Acids Res 42:e76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mao DY, Watson JD, Yan PS, Barsyte-Lovejoy D, Khosravi F, Wong WW, Farnham PJ, Huang TH, Penn LZ (2003) Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol 13:882–886

    Article  CAS  PubMed  Google Scholar 

  • Marandel L, Labbe C, Bobe J, Le Bail PY (2012) Evolutionary history of c-myc in teleosts and characterization of the duplicated c-myca genes in goldfish embryos. Mol Reprod Dev 79:85–96

    Article  CAS  PubMed  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  • Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gullà A, Tagliaferri P, Tassone P, Caraglia M (2014) Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids 3:e194

    Article  CAS  PubMed  Google Scholar 

  • Morris DR, Allen ML, Rabinovitch PS, Kuepfer CA, White MW (1988) Mitogenic signaling pathways regulating expression of c-myc and ornithine decarboxylase genes in bovine T-lymphocytes. Biochemistry 27:8689–8693

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pichon X, Wilson LA, Stoneley M, Bastide A, King HA, Somers J, Willis AE (2012) RNA binding protein/RNA element interactions and the control of translation. Curr Protein Pept Sci 13:294–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prochownik EV (2004) c-Myc as a therapeutic target in cancer. Expert Rev Anticancer Ther 4:289–302

    Article  CAS  PubMed  Google Scholar 

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ (2007) MicroRNA Let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67:9762–9770

    Article  CAS  PubMed  Google Scholar 

  • Schreiber-Agus N, Horner J, Torres R, Chiu FC, Depinho RA (1993a) Zebra fish myc family and max genes: differential expression and oncogenic activity throughout vertebrate evolution. Mol Cell Biol 13:2765–2775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber-Agus N, Torres R, Horner J, Lau A, Jamrich M, Depinho RA (1993b) Comparative analysis of the expression and oncogenic activities of Xenopus c-, N-, and L-myc homologs. Mol Cell Biol 13:2456–2468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spachmo B, Arukwe A (2012) Endocrine and developmental effects in Atlantic salmon (Salmo salar) exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids. Aquat Toxicol 108:112–124

    Article  CAS  PubMed  Google Scholar 

  • Spriggs KA, Stoneley M, Bushell M, Willis AE (2008) Reprogramming of translation following cell stress allows IRES mediated translation to predominate. Biol Cell 100:27–38

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Van Beneden RJ, Watson DK, Chen TT, Lautenberger JA, Papas TS (1986) Cellular myc (c-myc) in fish (rainbow trout): its relationship to other vertebrate myc genes and to the transforming genes of the MC29 family of viruses. Proc Natl Acad Sci USA 83:3698–3702

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Mayer JA, Mazumdar A, Fertuck K, Kim H, Brown M, Brown PH (2011) Estrogen induces c-myc gene expression via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor. Mol Endocrinol 25:1527–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134

    Article  CAS  Google Scholar 

  • Zimmerman KA, Yancopoulos GD, Collum RG, Smith RK, Kohl NE, Denis KA, Nau MM, Witte ON, Toran-Allerand D, Gee CE, Minna JD, Alt FW (1986) Differential expression of myc family genes during murine development. Nature 319:780–783

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stefan Dobosz from the Department of the Salmonid Research in Rutki (Inland Fisheries Institute in Olsztyn, Poland) for his excellent technical assistance during hatchery operations. We also thank Elżbieta Wojdat, M.Sc., from the Institute of Immunology and Experimental Therapy in Wrocław, Polish Academy of Sciences, for her valuable technical assistance in HEK293 cell culture procedures. The authors wish to thank Trev Hill and Mark Leonard, M.Sc., for proofreading the manuscript. The study was supported by research grant from National Science Centre (Poland) No. DEC-2012/07/B/NZ9/01320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Brzuzan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzuzan, P., Kramer, C., Łakomiak, A. et al. c-myc in whitefish (Coregonus lavaretus): structure, expression, and insights into possible posttranscriptional regulatory mechanism. Fish Physiol Biochem 41, 1155–1171 (2015). https://doi.org/10.1007/s10695-015-0077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0077-2

Keywords

Navigation