Skip to main content
Log in

Effects of glutamate on growth, antioxidant capacity, and antioxidant-related signaling molecule expression in primary cultures of fish enterocytes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The present study explored the effects of glutamate (Glu) on the growth, antioxidant capacity, and gene expression of NF-E2-related nuclear factor 2 (Nrf2) signaling molecule in enterocytes of Jian carp (Cyprinus carpio var. Jian). The enterocytes were incubated in media containing 0, 2, 4, 6, 8, and 10 mM/L Glu for 96 h. The results showed that Glu could promote fish enterocytes proliferation and differentiation. Additionally, activities of alkaline phosphatase, Na+, K+-ATPase, γ-glutamyl transpeptidase, and creatine kinase were significantly improved with the increase in Glu level up to 6 mM/L. Lactic acid dehydrogenase activity and malondialdehyde content in the medium and cellular protein carbonyls were depressed by Glu. Moreover, optimum Glu significantly enhanced glutathione content and the activities and gene expression of catalase, glutathione reductase, and glutathione peroxidase in enterocytes. Finally, the expression level of Nrf2 in enterocytes was significantly elevated by appropriate Glu content in the medium. Furthermore, optimum Glu significantly decreased Kelch-like ECH-associated protein 1 mRNA level in enterocytes. In conclusion, Glu improved the proliferation, function, and antioxidant capacity and regulated antioxidant-related signaling molecule expression of fish enterocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Hussaini AH (1949) On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits: anatomy and histology. Q J Microsc Sci 3(10):109–139

    Google Scholar 

  • Amores-Sánchez MI, Medina MÁ (1999) Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab 67(2):100–105

    Article  PubMed  Google Scholar 

  • Armenteros M, Heinonen M, Ollilainen V, Toldrá F, Estévez M (2009) Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography–electrospray ionisation–mass spectrometry (LC–ESI–MS). Meat Sci 83(1):104–112

    Article  CAS  PubMed  Google Scholar 

  • Bell JG, Buddington RK, Walton MJ, Cowey CB (1987) Studies on the putative role of γ-glutamyl transpeptidase in intestinal transport of amino acids in Atlantic salmon. J Comp Physiol B 157(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Bonova P, Burda J, Danielisova V, Nemethova M, Gottlieb M (2013) Delayed post-conditioning reduces post-ischemic glutamate level and improves protein synthesis in brain. Neurochem Int 62(6):854–860. doi:10.1016/j.neuint.2013.02.019

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT (2000) Glutamate, at the interface between amino acid and carbohydrate metabolism. J Nutr 130(4):988S–990S

    CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45(3):413–418

    Article  CAS  PubMed  Google Scholar 

  • Buccigrossi V, Giannattasio A, Armellino C, Lo Vecchio A, Caiazzo MA, Guarino A (2010) The functional effects of nutrients on enterocyte proliferation and intestinal ion transport in early infancy. Early Hum Dev 86(1):55–57

    Article  PubMed  Google Scholar 

  • Buttke TM, McCubrey JA, Owen TC (1993) Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods 157(1):233–240

    Article  CAS  PubMed  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250(14):5475–5480

    CAS  PubMed  Google Scholar 

  • Chen J, Zhou X, Feng L, Liu Y, Jiang J (2009) Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp (Cyprinus carpio var. Jian). Aquaculture 288(3):285–289

    Article  CAS  Google Scholar 

  • Cheung MK (1989) The specificity of glutamate inhibition of protein synthesis in synaptosomal fractions from rat cerebral cortex. Neurochem Int 15(3):293–300. doi:10.1016/0197-0186(89)90135-6

    Article  CAS  PubMed  Google Scholar 

  • Falkenberg LE, Westerhausen R, Craven AR, Johnsen E, Kroken RA, Specht K, Hugdahl K (2014) Impact of glutamate levels on neuronal response and cognitive abilities in schizophrenia. Neuroimage Clin 4:576–584

    Article  PubMed Central  PubMed  Google Scholar 

  • Farber NB, Newcomer JW, Olney JW (1998) The glutamate synapse in neuropsychiatric disorders: focus on schizophrenia and Alzheimer’s disease. Prog Brain Res 116:421–437

    Article  CAS  PubMed  Google Scholar 

  • Haarmann-Stemmann T, Abel J, Fritsche E, Krutmann J (2012) The AhR–Nrf2 pathway in keratinocytes: on the road to chemoprevention&quest. J Invest Dermatol 132(1):7–9

    Article  CAS  PubMed  Google Scholar 

  • He Y, Chu SH, Walker WA (1993) Nucleotide supplements alter proliferation and differentiation of cultured human (Caco-2) and rat (IEC-6) intestinal epithelial cells. J Nutr 123(6):1017–1027

    CAS  PubMed  Google Scholar 

  • Jiang J (2005) Effects of glutamine on the growth and metabolism of enterocytes in Jian carp (Cyprinus carpio var. Jian). Master thesis, Sichuan Agricultural University, Ya’an

  • Jiang WD (2013) Effect of Myo-inositol on the antioxidant ability in the intestine of Juveniles Jian carp (Crprinus carpio var. Jian) and the mechanism studies. Doctoral thesis, Sichuan Agricultural University

  • Jiang J, Zheng T, Zhou XQ, Liu Y, Feng L (2009) Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes. Aquac Nutr 15(4):409–414

    Article  CAS  Google Scholar 

  • Jiang W, Wu P, Kuang S, Liu Y, Jiang J, Hu K, Li S, Tang L, Feng L, Zhou X (2011) Myo-inositol prevents copper-induced oxidative damage and changes in antioxidant capacity in various organs and the enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian). Aquat Toxicol 105(3):543–551

    Article  CAS  PubMed  Google Scholar 

  • Jiang WD, Kuang SY, Liu Y, Jiang J, Hu K, Li SH, Tang L, Feng L, Zhou XQ (2013) Effects of myo-inositol on proliferation, differentiation, oxidative status and antioxidant capacity of carp enterocytes in primary culture. Aquac Nutr 19(1):45–53

    Article  Google Scholar 

  • Johnson AT, Kaufmann Y, Luo S, Babb K, Hawk R, Klimberg VS (2003) Gut glutathione metabolism and changes with 7, 12-DMBA and glutamine. J Surg Res 115(2):242–246

    Article  CAS  PubMed  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Kohen R, Nyska A (2002) Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650

    Article  CAS  PubMed  Google Scholar 

  • Kolarevic J, Takle H, Felip O, Ytteborg E, Selset R, Good CM, Baeverfjord G, Asgard T, Terjesen BF (2012) Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar). Aquat Toxicol 124:48–57

    Article  PubMed  Google Scholar 

  • Krogdahl Å, Bakke McKellep AM, Baeverfjord G (2003) Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac Nutr 9(6):361–371

    Article  Google Scholar 

  • Larsson T, Koppang EO, Espe M, Terjesen BF, Krasnov A, Moreno HM, Rørvik K, Thomassen M, Mørkøre T (2014) Fillet quality and health of Atlantic salmon (Salmo salar L.) fed a diet supplemented with glutamate. Aquaculture 426–427:288–295. doi:10.1016/j.aquaculture.2014.01.034

    Article  Google Scholar 

  • Ling J, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2010) Effect of dietary iron levels on growth, body composition and intestinal enzyme activities of Juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr 16(6):616–624

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol 53:401–426

    Article  CAS  Google Scholar 

  • Mao Q, Zhong X, Feng C, Pan A, Li Z, Huang Z (2010) Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca2+ antagonism. Cell Mol Neurobiol 30(7):1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisher 15(1–2):75–88

    Article  Google Scholar 

  • Mourente G, Bell JG, Tocher DR (2007) Does dietary tocopherol level affect fatty acid metabolism in fish? Fish Physiol Biochem 33(3):269–280

    Article  CAS  Google Scholar 

  • Mulier B, Rahman I, Watchorn T, Donaldson K, MacNee W, Jeffery PK (1998) Hydrogen peroxide-induced epithelial injury: the protective role of intracellular nonprotein thiols (NPSH). Eur Respir J 11(2):384–391

    Article  CAS  PubMed  Google Scholar 

  • Neu J, Shenoy V, Chakrabarti R (1996) Glutamine nutrition and metabolism: where do we go from here? FASEB J 10(8):829–837

    CAS  PubMed  Google Scholar 

  • Nishinaka T, Ichijo Y, Ito M, Kimura M, Katsuyama M, Iwata K, Miura T, Terada T, Yabe-Nishimura C (2007) Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicol Lett 170(3):238–247

    Article  CAS  PubMed  Google Scholar 

  • Oehme M, Grammes F, Takle H, Zambonino-Infante J, Refstie S, Thomassen MS, Rørvik K, Terjesen BF (2010) Dietary supplementation of glutamate and arginine to Atlantic salmon (Salmo salar L.) increases growth during the first autumn in sea. Aquaculture 310(1):156–163

    Article  CAS  Google Scholar 

  • Olsvik PA, Kristensen T, Waagbø R, Rosseland BO, Tollefsen K, Baeverfjord G, Berntssen M (2005) mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. CBP Part C Toxicol Pharmacol 141(3):314–323

    CAS  Google Scholar 

  • Peh W, Chew SF, Ching BY, Loong AM, Ip YK (2010) Roles of intestinal glutamate dehydrogenase and glutamine synthetase in environmental ammonia detoxification in the euryhaline four-eyed sleeper, Bostrychus sinensis. Aquat Toxicol 98(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Ramprasath T, Murugan PS, Kalaiarasan E, Gomathi P, Rathinavel A, Selvam GS (2012) Genetic association of Glutathione peroxidase-1 (GPx-1) and NAD (P) H: quinone oxidoreductase 1 (NQO1) variants and their association of CAD in patients with type-2 diabetes. Mol Cell Biochem 361(1–2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Reisman SA, Yeager RL, Yamamoto M, Klaassen CD (2009) Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species. Toxicol Sci 108(1):35–47

  • Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, Fielder SE, Eide SJ, Lovering SL, Wu G (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44(3):911–923

    Article  CAS  PubMed  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar R, Babu PVA, Srinivasulu Shyamaladevi C (2011) Aspartate and glutamate prevents isoproterenol-induced cardiac toxicity by alleviating oxidative stress in rats. Exp Toxicol Pathol 63(1):137–142

    Article  CAS  PubMed  Google Scholar 

  • Stehr W, Mercer TI, Bernal NP, Erwin CR, Warner BW (2005) Opposing roles for p21waf1/cip1 and p27kip1 in enterocyte differentiation, proliferation, and migration. Surgery 138(2):187–194

    Article  PubMed  Google Scholar 

  • Stoddart MJ (2011) Cell viability assays: introduction Mammalian cell viability. Springer, New York, pp 1–6

    Google Scholar 

  • Sun H, Hui C, Wu J (1998) Cloning, characterization, and expression in Escherichia coli of three creatine kinase muscle isoenzyme cDNAs from carp (Cyprinus carpio) striated muscle. J Biol Chem 273(50):33774–33780

    Article  CAS  PubMed  Google Scholar 

  • Sweeney G, Klip A (1998) Regulation of the Na+/K+-ATPase by insulin: why and how? Insulin action. Springer, New York, pp 121–133

    Google Scholar 

  • Szydlowska K, Zawadzka M, Kaminska B (2006) Neuroprotectant FK506 inhibits glutamate-induced apoptosis of astrocytes in vitro and in vivo. J Neurochem 99(3):965–975

    Article  CAS  PubMed  Google Scholar 

  • Tengjaroenkul B, Smith BJ, Caceci T, Smith SA (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 182(3):317–327

    Article  CAS  Google Scholar 

  • Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46(11):1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Viallard V, Denis C, Trocheris V, Murat JC (1986) Effect of glutamine deprivation and glutamate or ammonium chloride addition on growth rate, metabolism and differentiation of human colon cancer cell-line HT29. Int J Biochem 18(3):263–269

    Article  CAS  PubMed  Google Scholar 

  • Villanueva J, Vanacore R, Goicoechea O, Amthauer R (1997) Intestinal alkaline phosphatase of the fish Cyprinus carpio: regional distribution and membrane association. J Exp Zool 279(4):347–355

    Article  CAS  Google Scholar 

  • Wang P, Powell SR (2010) Decreased sensitivity associated with an altered formulation of a commercially available kit for detection of protein carbonyls. Free Radic Bio Med 49(2):119–121. doi:10.1016/j.freeradbiomed.2010.03.005

    Article  CAS  Google Scholar 

  • Windmueller HG, Spaeth AE (1980) Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem 255(1):107–112

    CAS  PubMed  Google Scholar 

  • Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19(2):137–161

    Article  CAS  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr Int Rev J 1(1):31–37

    Article  CAS  Google Scholar 

  • Wu P, Jiang W, Liu Y, Chen G, Jiang J, Li S, Feng L, Zhou X (2014) Effect of choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immun 38(2):374–382

    Article  CAS  Google Scholar 

  • Zhang X, Zhu Y, Cai L, Wu T (2008) Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture 280(1):136–139

    Article  CAS  Google Scholar 

  • Zhao Y, Hu Y, Zhou XQ, Zeng XY, Feng L, Liu Y, Jiang WD, Li SH, Li DB, Wu CM, Jiang J (2014a) Effects of dietary glutamate supplementation on growth performance, digestive enzyme activities and antioxidant capacity in intestine of grass carp (Ctenopharyngodon idella). Aquac Nutr. doi:10.1111/anu.12215

    Google Scholar 

  • Zhao Y, Zhou X, Hu Y, Li J, Li Q, Feng L, Jiang W, Liu Y, Jiang J (2014b) Effects of dietary glutamate on muscle quality of grass carp (Ctenopharyngodon idella) during middle growth period. Chin J Anim Nutr 11(26):3452–3460

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Youth Foundation Program of the Education Department of Sichuan Province, China (14ZB0021), and the Applied Basic Research Programs of Science and Technology Commission Foundation of Sichuan Province, China (2015JY0067). The authors would like to express their sincere thanks to the personnel of these teams for their kind assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Jiang or Ye Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Shi, D., Zhou, XQ. et al. Effects of glutamate on growth, antioxidant capacity, and antioxidant-related signaling molecule expression in primary cultures of fish enterocytes. Fish Physiol Biochem 41, 1143–1153 (2015). https://doi.org/10.1007/s10695-015-0076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0076-3

Keywords

Navigation