Skip to main content
Log in

Histological and enzymatic responses of Japanese flounder (Paralichthys olivaceus) and its hybrids (P. olivaceus ♀ × P. dentatus ♂) to chronic heat stress

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study investigated the effects of long-term heat exposure on Japanese flounder (Paralichthys olivaceus) and its hybrids (P. olivaceus ♀ × summer flounder Paralichthys dentatus ♂). From 24 ± 0.5 °C, temperature was increased by 1 ± 0.5 °C in a day and was kept at that temperature for 5 days before next rise. Cumulative survival rate (CSR), cumulative survival rate under different temperature (CSR-T), histological alteration, and related enzyme activities were investigated. In P. olivaceus, mass mortality occurred at 29 and 32 °C (the CSR-T dropped to 42.39 %), and serious gill damages appeared at 30 and 32 °C. Meanwhile, the activities of superoxide dismutase (SOD), catalase (CAT), lysozyme (LZM), and pyruvate kinase (PK) declined around 29 and 32 °C (except for CAT). In comparison with P. olivaceus, the CSR of the hybrids was higher, the gill kept a better structural integrity, and the activities of SOD, CAT, LZM, and PK showed tiny fluctuations. The results suggested that during the process of chronic heat stress, P. olivaceus seemed to be more sensitive to 29 and 32 °C, and the manifestations in survival, histology, and enzyme activity were generally consistent. For the hybrids, the comparatively insensitivity to high temperature might imply its better heat tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abel P, Skidmore J (1975) Toxic effects of an anionic detergent on the gills of rainbow trout. Water Res 9(8):759–765

    Article  CAS  Google Scholar 

  • Abele D (2002) Toxic oxygen: the radical life-giver. Nature 420(6911):27

    Article  CAS  PubMed  Google Scholar 

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Phys A 138(4):405–415

    Article  Google Scholar 

  • Adamo SA (2004) How should behavioural ecologists interpret measurements of immunity? Anim Behav 68(6):1443–1449

    Article  Google Scholar 

  • Ahmad SM, Shah FA, Bhat FA, Bhat JIA, Balkhi MH (2011) Thermal adaptability and disease association in common carp (Cyprinus carpio communis) acclimated to different (four) temperatures. J Therm Biol 36(8):492–497

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Beitinger TL, Bennett WA (2000) Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environ Biol Fish 58(3):277–288

    Article  Google Scholar 

  • Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish 58(3):237–275

    Article  Google Scholar 

  • Bengtson D (1999) Aquaculture of summer flounder (Paralichthys dentatus): status of knowledge, current research and future research priorities. Aquaculture 176(1):39–49

    Article  Google Scholar 

  • Benville PE Jr, Smith CE, Shanks WE (1968) Some toxic effects of dimethyl sulfoxide in salmon and trout. Toxicol Appl Pharmacol 12(2):156–178

    Article  CAS  PubMed  Google Scholar 

  • Boughammoura S, Kessabi K, Chouchene L, Messaoudi I (2013) Effects of cadmium and high temperature on some parameters of calcium metabolism in the killifish (Aphanius fasciatus). Biol Trace Elem Res 154(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58(1):79–110

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Perez-Jimenez A, Guerreiro I, Peres H, Castro-Cunha M, Oliva-Teles A (2012) Effects of temperature and dietary protein level on hepatic oxidative status of Senegalese sole juveniles (Solea senegalensis). Comp Biochem Phys A 163(3–4):372–378

    Article  CAS  Google Scholar 

  • Chung K (2001) Critical thermal maxima and acclimation rate of the tropical guppy Poecilla reticulata. Hydrobiologia 462(1–3):253–257

    Article  Google Scholar 

  • Crockett EL (2008) The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review. J Comp Physiol B 178(7):795–809

    Article  CAS  PubMed  Google Scholar 

  • Currie RJ, Bennett WA, Beitinger TL, Cherry DS (2004) Upper and lower temperature tolerances of juvenile freshwater game-fish species exposed to 32 days of cycling temperatures. Hydrobiologia 523(1–3):127–136

    Article  Google Scholar 

  • Currie S, Ahmady E, Watters MA, Perry SF, Gilmour KM (2013) Fish in hot water: hypoxaemia does not trigger catecholamine mobilization during heat shock in rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys A 165(2):281–287

    Article  CAS  Google Scholar 

  • Dalela R, Bhatnagar M, Tyagi A, Verma S (1979) Histological damage of gills in Channa gachua after acute and subacute exposure to endosulfan and rogor. Mikroskopie 35(11–12):301

    CAS  PubMed  Google Scholar 

  • Dalvi RS, Pal AK, Tiwari LR, Baruah K (2012) Influence of acclimation temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma (Gunther). Fish Physiol Biochem 38(4):919–927

    Article  CAS  PubMed  Google Scholar 

  • Das UN (2006) Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med Sci Monit 12(5):RA79

    CAS  PubMed  Google Scholar 

  • Dash G, Yonzone P, Chanda M, Paul M (2011) Histopathological changes in Labeo rohita (Hamilton) fingerlings to various acclimation temperatures. Chron Young Sci 2(1):29–36

    Article  Google Scholar 

  • Dent L, Lutterschmidt WI (2003) Comparative thermal physiology of two sympatric sunfishes (Centrarchidae: Perciformes) with a discussion of microhabitat utilization. J Therm Biol 28(1):67–74

    Article  Google Scholar 

  • Du H, Zhou P, Huang B (2013) Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environ Exp Bot 87:159–166

    Article  CAS  Google Scholar 

  • Eller LL (1975) Gill lesions in freshwater teleosts. The pathology of fishes. Univ of Wisconsin Press, Madison, WI

    Google Scholar 

  • Fang S (2013) Pathogenicity of two vibrio strains in South China Sea to Haliotis discus hannai Ino. University of Chinese Academy of Sciences (Institute of Oceanology), Tsingtao

    Google Scholar 

  • Flores-Lopes F, Thomaz AT (2011) Histopathologic alterations observed in fish gills as a tool in environmental monitoring. Braz J Biol 71(1):179–188

    Article  CAS  PubMed  Google Scholar 

  • Ford T, Beitinger TL (2005) Temperature tolerance in the goldfish, Carassius auratus. J Therm Biol 30(2):147–152

    Article  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201(8):1203–1209

    CAS  PubMed  Google Scholar 

  • Fry FEJ (1947) Effects of the environment on animal activity. Studies in biology, series. University of Toronto Press, Toronto

    Google Scholar 

  • Gardner G (1975) Chemically induced lesions in estuarine or marine teleosts. In: Ribelin W, Migaki G (eds) The pathology of fishes. University of Wisconsin Press, Madison, WI, pp 657–694

    Google Scholar 

  • Haensly W, Neff J, Sharp J, Morris A, Bedgood M, Boem P (1982) Histopathology of Pleuronectes platessa L. from Aber Wrac’h and Aber Benoit, Brittany, France: long-term effects of the Amoco Cadiz crude oil spill. J Fish Dis 5(5):365–391

    Article  Google Scholar 

  • Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine, vol 135. Oxford university press Oxford, Oxford

    Google Scholar 

  • Heath N (1884) Effect of cold on fishes. Bull US Fish Comm 4:369–371

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution, vol 480. Oxford University Press on Demand, New York

    Google Scholar 

  • Hughes GM (1966) The dimensions of fish gills in relation to their function. J Exp Biol 45(1):177–195

    CAS  PubMed  Google Scholar 

  • Hutchison VH (1976) Factors influencing thermal tolerances of individual organisms. In: Proceedings of a symposium on thermal ecology II, Oak Ridge, Tennessee, 1975. Georgia, pp 10–26

  • Jacobs D, Esmond EF, Melisky EL, Hocutt CH (1981) Morphological changes in gill epithelia of heat-stressed rainbow trout, Salmo gairdneri: evidence in support of a temperature-induced surface area change hypothesis. Can J Fish Aquat Sci 38(1):16–22

    Article  Google Scholar 

  • Jian CY, Cheng SY, Chen JC (2003) Temperature and salinity tolerances of yellowfin sea bream, Acanthopagrus latus, at different salinity and temperature levels. Aquac Res 34(2):175–185

    Article  Google Scholar 

  • Kerfoot JR (2012) Thermal tolerance of the invasive Belonesox belizanus, pike killifish, throughout ontogeny. J Exp Zool A Ecol Genet Physiol 317A(5):266–274

    Article  Google Scholar 

  • Kondo H, Suda S, Kawana Y, Hirono I, Nagasaka R, Kaneko G, Ushio H, Watabe S (2012) Effects of feed restriction on the expression profiles of the glucose and fatty acid metabolism-related genes in rainbow trout Oncorhynchus mykiss muscle. Fish Sci 78(6):1205–1211

    Article  CAS  Google Scholar 

  • Kumar S, Sahu NP, Pal AK, Subramanian S, Priyadarshi H, Kumar V (2011) High dietary protein combats the stress of Labeo rohita fingerlings exposed to heat shock. Fish Physiol Biochem 37(4):1005–1019

    Article  CAS  PubMed  Google Scholar 

  • Lencioni V, Bernabò P, Cesari M, Rebecchi L (2013) Thermal stress induces HSP70 proteins synthesis in larvae of the cold stream non-biting midge Diamesa cinerella Meigen. Arch Insect Biochem 83(1):1–14

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • López-Olmeda J, Sánchez-Vázquez F (2011) Thermal biology of zebrafish (Danio rerio). J Therm Biol 36(2):91–104

    Article  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006) Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp Biochem Phys C 143(1):36–41

    Google Scholar 

  • Lutterschmidt WI, Hutchison VH (1997a) The critical thermal maximum: history and critique. Can J Zool 75(10):1561–1574

    Article  Google Scholar 

  • Lutterschmidt WI, Hutchison VH (1997b) The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can J Zool 75(10):1553–1560

    Article  Google Scholar 

  • Madeira D, Narciso L, Cabral HN, Vinagre C, Diniz MS (2013) Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp Biochem Phys A 166(2):237–243

    Article  CAS  Google Scholar 

  • Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42(4):630–648

    Article  CAS  Google Scholar 

  • Martinez-Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisher 15(1–2):75–88

    Article  Google Scholar 

  • Mitchell A, Grizzle JM, Plumb JA (1978) Nifurpirinol (Furanace; P-7138) related lesions on channel catfish Ictalurus punctatus (Rafinesque). J Fish Dis 1(1):115–121

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mora C, Maya MF (2006) Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes. J Therm Biol 31(4):337–341

    Article  Google Scholar 

  • Mora C, Ospina A (2001) Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island (tropical eastern Pacific). Mar Biol 139(4):765–769

    Article  Google Scholar 

  • Nascimento AA, Araujo FG, Gomes ID, Mendes RMM, Sales A (2012) Fish gills alterations as potential biomarkers of environmental quality in a eutrophized tropical river in south-eastern Brazil. Anat Histol Embryol 41(3):209–216

    Article  CAS  PubMed  Google Scholar 

  • Newstead JD (1967) Fine structure of the respiratory lamellae of teleostean gills. Zeitschrift für Zellforschung und Mikroskopische Anatomie 79(3):396–428

    Article  CAS  PubMed  Google Scholar 

  • Packer DB, Griesbach SJ, Berrien PL, Zetlin CA, Johnson DL, Morse WW (1999) Essential fish habitat source document: summer flounder, Paralichthys dentatus, life history and habitat characteristics. NOAA Tech Memo NMFS-NE-151

  • Parihar MS, Javeri T, Hemnani T, Dubey AK, Prakash P (1997) Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J Therm Biol 22(2):151–156

    Article  CAS  Google Scholar 

  • Pauley GB, Nakatani RE (1967) Histopathology of “gas-bubble” disease in salmon fingerlings. J Fish Board Can 24(4):867–871

    Article  Google Scholar 

  • Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. Sublethal and chronic effects of pollutants on freshwater fish. Fishing News Books, Oxford

    Google Scholar 

  • Pörtner H (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88(4):137–146

    Article  PubMed  Google Scholar 

  • Rady AA (1993) Effect of change in environmental temperature on antioxidant enzyme activities and lipid peroxidation in red blood cells of carp. Comp Biochem Phys B 104(4):695–698

    Article  Google Scholar 

  • Rajaguru S, Ramachandran S (2001) Temperature tolerance of some estuarine fishes. J Therm Biol 26(1):41–45

    Article  PubMed  Google Scholar 

  • Reis AB, Sant’Ana DDG, de Azevedo JF, Merlini LS, Araujo EJD (2009) The influence of the aquatic environment in tanks sequentially interconnected with PVC pipes on the gill epithelium and lamellas of tilapia (Oreochromis niloticus). Pesqui Vet Bras 29(4):303–311

    Article  Google Scholar 

  • Ribelin WE (1975) The pathology of fishes: proceedings of a symposium. University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Rojas LM, Mata C, Oliveros A, Salazar-Lugo R (2013) Histology of gill, liver and kidney in juvenile fish Colossoma macropomum exposed to three temperatures. Rev Biol Trop 61(2):797–806

    PubMed  Google Scholar 

  • Rombough P, Garside E (1977) Hypoxial death inferred from thermally induced injuries at upper lethal temperatures, in the banded killifish, Fundulus diaphanus (LeSueur). Can J Zool 55(10):1705–1719

    Article  Google Scholar 

  • Salazar-Lugo R, Mata C, Oliveros A, Rojas LM, Lemus M, Rojas-Villarroel E (2011) Histopathological changes in gill, liver and kidney of neotropical fish Colossoma macropomum exposed to paraquat at different temperatures. Environ Toxicol Pharmacol 31(3):490–495

    Article  CAS  PubMed  Google Scholar 

  • Saravana Bhavan P, Geraldine P (2000) Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcolmsonii exposed to endosulfan. Aquat Toxicol 50(4):331–339

    Article  CAS  PubMed  Google Scholar 

  • Scott A, Rogers W (1980) Histological effects of prolonged sublethal hypoxia on channel catfish Ictalurus punctatus (Rafinesque). J Fish Dis 3(4):305–316

    Article  Google Scholar 

  • Sheng L, Xu J, Wang Y, Liu X, Yu W, Li W (2005) Effects of heat shock on the GPT, CAT and ultrastructure of common carp. J Toxicol 19(A03):302–303

    Google Scholar 

  • Shrimpton JM, Zydlewski JD, Heath JW (2007) Effect of daily oscillation in temperature and increased suspended sediment on growth and molting in juvenile chinook salmon, Oncorhynchus tshawytscha. Aquaculture 273(2–3):269–276

    Article  Google Scholar 

  • Smart G (1976) The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri). J Fish Biol 8(6):471–475

    Article  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1733

    CAS  PubMed  Google Scholar 

  • Sui J, Ma D, Liu Q, Xu S, Xiao Z, Lin F, Xiao Y, Li J (2012) Germ cells and fertilization differences among Japanese flounder Paralichthys olivaceus, summer flounder Paralichthys dentatus and their first and second generations. J Fish Biol 80(3):473–485

    Article  CAS  PubMed  Google Scholar 

  • Sui J, Liu Q, Xiao Z, Ma D, Xu S, He T, Liu Y, Xiao Y, Li J (2013) The viability, melanophore and embryo genesis of first-and second-generation hybrids between Paralichthys olivaceus and P. dentatus. Mar Biol Res 9(2):220–226

    Article  Google Scholar 

  • Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S (2003) Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut 121(3):307–320

    Article  CAS  PubMed  Google Scholar 

  • Tomanek L (2010) The role of oxidative stress in setting thermal tolerance limits in Mytilus. Comp Biochem Phys A 157(1):S43

    Article  Google Scholar 

  • Wang H (2005) Effects of thermal shock on the activities of four kinds of enzyme in Carasslus auratus. Northeast Normal University, Changchun

    Google Scholar 

  • Wang Z, Pote J, Huang B (2003) Responses of cytokinins, antioxidant enzymes, and lipid peroxidation in shoots of creeping bentgrass to high root-zone temperatures. J Am Soc Hortic Sci 128(5):648–655

    CAS  Google Scholar 

  • Wang X, Wang L, Zhang H, Ji Q, Song L, Qiu L, Zhou Z, Wang M, Wang L (2012) Immune response and energy metabolism of Chlamys farreri under Vibrio anguillarum challenge and high temperature exposure. Fish Shellfish Immun 33(4):1016–1026

    Article  CAS  Google Scholar 

  • Wedemeyer GA, Meyer FP, Smith L (1976) Environmental stress and fish diseases. TFH Publications Inc, Neptune City, NJ

    Google Scholar 

  • Wells MM (1914) Resistance and reactions of fishes to temperature. Trans Illinois Acad Sci 7:48–59

    Google Scholar 

  • Werner I, Viant M, Rosenblum E, Gantner A, Tjeerdema R, Johnson M (2006) Cellular responses to temperature stress in steelhead trout (Onchorynchus mykiss) parr with different rearing histories. Fish Physiol Biochem 32(3):261–273

    Article  CAS  Google Scholar 

  • Wood EM (1960) Definitive diagnosis of fish mortalities. J Water Pollut Control Fed 32(9):994–999

    CAS  Google Scholar 

  • Yang R, Xie C, Fan Q, Gao C, Fang L (2010) Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture 302(1):112–123

    Article  Google Scholar 

  • Zhang Z, Jia G, Zuo J, Zhang Y, Lei J, Ren L, Feng D (2012) Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult Sci 91(11):2931–2937

    Article  CAS  PubMed  Google Scholar 

  • Zhao H (2011) Fundamental research on the molecular mechanism in response to heat stress in Apostichopus japonicus (Selenka). Dissertation, University of Chinese Academy of Sciences (Institute of Oceanology), Tsingtao, Shandong

Download references

Acknowledgments

The authors are grateful to Professor Xiao Liu and Professor Ying Liu in Institute of Oceanology, Chinese Academy of Sciences, for kindly providing circulating water systems. This research was supported by Modern Agro-industry Technology Research System (nycytx-50), the Innovation Key Program of the Chinese Academy of Sciences and the Experiment and Demonstration of Scientific and Technical Innovation on Modern Ecological Ocean Agriculture (KSC2-EW-B-3), Science-Technology R&D project of Shandong Province (2011GHy11530), Jiangsu Provincial Natural Science Foundation of China (BK2012222), and Fundamental Research Project of Technology Program of Qingdao, China (12-1-4-8(6)-jch, 12-1-4-8-(7)-jch, and 12-4-1-51-hy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghua Liu or Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Ma, D., Zhao, C. et al. Histological and enzymatic responses of Japanese flounder (Paralichthys olivaceus) and its hybrids (P. olivaceus ♀ × P. dentatus ♂) to chronic heat stress. Fish Physiol Biochem 40, 1031–1041 (2014). https://doi.org/10.1007/s10695-013-9903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9903-6

Keywords

Navigation