Skip to main content
Log in

Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of hyperthermia and recovery on cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA), total antioxidant capacity (T-AOC), and heat shock protein (HSP60, 70, and 90) mRNA expression in the hepatic cells of the grass carp, Ctenopharyngodon idellus. Triplicate groups of cultured cells were exposed to 30, 32, or 34 °C for 0.5 h and then immediately incubated at 27 °C in 5 % CO2 for 6, 12, 24, or 48 h. Hyperthermia stress greatly reduced cell viability and increased LDH release. Cell damage declined after recovery. Hyperthermia stress increased the lipid peroxide levels and reduced the antioxidant capacity (e.g., reduced SOD and T-AOC) of the cells. However, oxidative damage declined as the recovery period increased, and the levels of MDA, SOD, and T-AOC were restored. After cells were exposed to 32 °C, the expression of HSP60 after recovery for 1, 2, and 4 h (P < 0.05), the expression of HSP70 after recovery for 0.5 and 1 h (P < 0.01), and the expression of HSP90 throughout recovery were significantly higher (P < 0.01) than the prestress levels. During the recovery period, the variations in HSP gene expression reflected the transition period from a state of cellular growth to one of the cellular repairs. In conclusion, hyperthermia depresses cell viability, induces oxidative damage, and increases HSP expression, which plays an important role during hyperthermic stress in grass carp hepatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A 138:405–415

    Article  Google Scholar 

  • Ainsworth AJ, Dexiang C, Waterstrat PR, Greenway T (1991) Effect of temperature on the immune system of channel catfish (Ictalurus punctatus)-ILeucocyte distribution and phagocyte function in the anterior kidney at 10 °C. Comp Biochem Physiol 100:907–912

    Article  CAS  Google Scholar 

  • Airaksinen S, Rabergh CM, Sistonen L, Nikinmaa M (1998) Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cells. J Exp Biol 201:2543–2551

    CAS  PubMed  Google Scholar 

  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ansaldo M, Luquet CM, Evelson PA, Polo JM, Llesuy S (2000) Antioxidant levels from different Antarctic fish caught around South Georgia and Shag Rocks. Polar Biol 23:160–165

    Article  Google Scholar 

  • Benfey TJ, Biron M (2000) Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture 184:167–176

    Article  CAS  Google Scholar 

  • Bonga SEW (1997) The stress response in fish. Physiol Rev 77:591–625

    Google Scholar 

  • Bridges PJ, Brusie MA, Fortune JE (2005) Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest Anim Endocrinol 29:508–522

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, Leem TH, Fleshner M (2003) Stress-induced extracellular HSP72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones 8:272–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen WH, Sun LT, Tsai CL, Song YL, Chang CF (2002) Cold stress induced the modulation of catecholamine, cortisol, immunoglobulin M, and leukocyte phagocytosis in tilapia. Gener Comp Endocrinol 126:90–100

    Article  CAS  Google Scholar 

  • Chen B, Zhou M, Xu LX (2005) Study of vascular endothelial cell morphology during hyperthermia. J Therm Biol 30:111–117

    Article  Google Scholar 

  • Chen Y, Chen Q, Lu J, Li F, Tao YY, Liu CH (2009) Effects of Danggui Buxue Decoction on lipid peroxidation and MMP-2/9 activities of fibrotic liver in rats. Chin J Integr Med 15:435–441

    Article  CAS  PubMed  Google Scholar 

  • Cudmore B, Mandrak NE (2004) Biological synopsis of grass carp (Ctenopharyngodon idella). Can Manuscr Rep Fish Aquat Sci 2705:1–51

    Google Scholar 

  • Cui J, Xiao Y, Shi YH, Wang B, Le GW (2012) Lipoic acid attenuates high-fat-diet-induced oxidative stress and B-cell-related immune depression. Nutrition 28:275–280

    Article  CAS  PubMed  Google Scholar 

  • Dean RT, Hunt JV, Grant AJ, Yamamoto Y, Niki E (1991) Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radic Biol Med 11:161–168

    Article  CAS  PubMed  Google Scholar 

  • Dey A, Cederbaum AI (2006) Geldanamycin, an inhibitor of HSP90, potentiates cytochrome P450 2E1-mediated toxicity in HepG2 cells. J Pharmacol Exp Ther 317:1391–1399

    Article  CAS  PubMed  Google Scholar 

  • Du J, Di HS, Guo L, Li ZH, Wang GL (2008) Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J Therm Biology 33:37–47

    Article  CAS  Google Scholar 

  • Encomio VG, Chu FL (2004) Characterization of heat shock protein expression and induced thermotolerance in P marinus parasitized eastern oysters: lab and field studies. J Shellfish Res 23:289–290

    Google Scholar 

  • Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  PubMed  Google Scholar 

  • Eustace BK, Jay DG (2004) Extracellular roles for the molecular chaperone, HSP90. Cell Cycle 3:1098–1100

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Fevolden SE, Roed KH, Fjalestad KT (2003) A combined salt and confinement stress enhances mortality in rainbow trout (Oncorhymchus mykiss) selected for high stress responsiveness. Aquaculture 216:67–76

    Article  Google Scholar 

  • Flohe L, Otting F (1984) Superoxide dismutase assay. Methods Enzymol 105:93–104

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organisation (2012) FAO Fisheries and Aquaculture Department Food and Agriculture Organization of the United Nations Rome

  • Gonzalez M, Gueguena Y, Desserrea G, de Lorgerila J, Romestanda B, Bachere E (2007) Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas. Dev Comp Immunol 31:329–332

    Google Scholar 

  • Heise K, Puntarulo S, Pörtner HO, Abelle D (2003) Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp Biochem Physiol C 134:79–90

    Article  CAS  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Abele D, Pörtner HO (2006) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L. J Exp Biol 209:353–363

    Article  CAS  PubMed  Google Scholar 

  • Henczová M, Deér AK, KomLósi V, Mink J (2006) Detection of toxic effects of Cd2+ on different fish species via liver cytochrome P450-dependent monooxygenase activities and FTIR spectroscopy. Anal Bioanal Chem 385:652–659

    Article  PubMed  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation mechanisms and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Hui GH, Wang L, Mo YH, Zhang LX (2002) Study of grass carp (Ctenopharyngodon idellus) quality predictive model based on electronic nose Sensor. Actuat B-Chem 166–167:301–308

    Google Scholar 

  • Iwama GK, Afonso LOB, Vijayan MM (2006) Stress in fishes. In: D H Evans and J B Claiborne (ed) The physiology of fishes, p 319–342

  • Johnson EO, Kamilaris TC, Chrousos GP, Gold PW (1992) Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav R 16:115–130

    Article  CAS  Google Scholar 

  • Kassahn K, Crozier R, Ward A, Stone G, Caley M (2007) From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis. BMC Genomics 8:358

    Article  PubMed Central  PubMed  Google Scholar 

  • King YT, Lin CS, Lin JH, Lee WC (2002) Whole-body-hyperthermia-induced thermotolerance is associated with the induction of heat shock protein 70 in mice. J Exp Biol 205:273–278

    CAS  PubMed  Google Scholar 

  • Kültz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 206:3119–3124

    Article  PubMed  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  Google Scholar 

  • Le Morvan C, Troutaud D, Deschaux P (1998) Differential effects of temperature on specific and nonspecific immune defences in fish. J Exp Biol 201:165–168

    PubMed  Google Scholar 

  • Lemaire P, Viarengo A, Canesi L, Livingstone DR (1993) Pro-oxidant and antioxidant processes in gas gland and other tissues of cod (Gadus morhua). J Comp Physiol 163B:477–486

    Google Scholar 

  • Li SF, Lu QQ, Zhou BY (1995) Evaluation on the potential capacity of the swan oxbow for the conservation of the major Chinese carps. Aquaculture 137:46–47

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2_ddct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AJ, Kelly AM (2006) The public sector role in the establishment of grass carp in the United States. Fisheries 31:113–121

    Article  Google Scholar 

  • Morimoto RI, Tissieres A, Cesrgopoulos C (1993) Cell in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  CAS  PubMed  Google Scholar 

  • Ndong D, Chen YY, Lin YH, Vaseeharan B, Chen JC (2007) The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish Shellfish Immunol 22:686–694

    Article  CAS  PubMed  Google Scholar 

  • Palmisano AN, Winton JR, Dickhoff WW (2000) Tissue-specific induction of HSP90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Mar Biotechnol 2:329–338

    CAS  PubMed  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    Article  PubMed  Google Scholar 

  • Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Article  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  Google Scholar 

  • Prosser CL (1991) Comparative animal physiology, environmental and metabolic animal physiology, 4th edn. Wiley-Liss, New York

    Google Scholar 

  • Rice-Evans CA, Miller NJ (1994) Total antioxidant status in plasma and body fluids. Methods Enzymol 234:279–293

    Article  CAS  PubMed  Google Scholar 

  • Ritchie KP, Keller BM, Syed KM, Lepock JR (1994) Hyperthermia (heat shock)-induced protein denaturation in liver, muscle and lens tissue as determined by differential scanning calorimetry. Int J Hypertherm 10:605–618

    Article  CAS  Google Scholar 

  • Sanders BM (1993) Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol 23:49–75

    Article  CAS  PubMed  Google Scholar 

  • Santos-Marques MJ, Carvalho F, Sousa C, Remiao F, Vitorino R, Amado F, Ferreira R, Duarte JA, de Lourdes Bastos M (2006) Cytotoxicity and cell signalling induced by continuous mild hyperthermia in freshly isolated mouse hepatocytes. Toxicology 224:210–218

    Article  CAS  PubMed  Google Scholar 

  • Schulte PM (2004) Changes in gene expression as biochemical adaptations to environmental change: a tribute to Peter Hochachka. Comp Biochem Physiol B 139:519–529

    Article  PubMed  Google Scholar 

  • Somero G (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Frontiers in Zoology 2:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Somero GN, Hofmann GE (1996) Temperature thresh-olds for protein adaptation: when does temperature change start to ‘hurt’? In: Wood CM, McDonald DG (eds) Global warming: implications for freshwater and marine fish Society for Experimental Biology Seminar Series 61. Cambridge University Press, Cambridge, pp 1–24

    Google Scholar 

  • Song L, Wu L, Ni D, Chang Y, Xu W, Xing K (2006) The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacterial challenge and naphthalin stress. Fish Shellfish Immunol 21:335–345

    Article  CAS  PubMed  Google Scholar 

  • Song WH, Gladys L, Dong YW, Liu Y, Dong SL, Wang F (2012) Effect of thermal stress on survival and expression of high temperature of heat shock protein of grass carp (Ctenopharyngodon idellus). Trans Oceanol Limnol 1:27–32 (in Chinese)

    Google Scholar 

  • Watts M, Munday BL, Burke CM (2001) Immune responses of teleost fish. AustVet J 79:570–574

    CAS  Google Scholar 

  • Welcomme RL (1988) International introductions of inland aquatic species FAO fisheries department, p 1–328

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    CAS  PubMed  Google Scholar 

  • Winzer K, Noorden CJFV, Köhler A (2002) Sex-specific biotransformation and detoxification after xenobiotic exposure of primary cultured hepatocytes of European flounder (Platichthys flesus L). Aquat Toxicol 59:17–33

    Article  CAS  PubMed  Google Scholar 

  • Wood LA, Brown IR, Youson JH (1998) Characterization of the heat shock response in the gills of sea lampreys and a brook lamprey at different intervals of their life cycles. Comp Biochem Physiol A 120:509–518

    Article  CAS  Google Scholar 

  • Xanthoudakis S, Nicholson DW (2000) Heat-shock proteins as death determinants. Nat Cell Biol 2:163–165

    Article  Google Scholar 

  • Xu GJ, Sheng XZ, Xing J, Zhan WB (2011) Effect of temperature on immune response of Japanese flounder (Paralichthys olivaceus) to inactivated lymphocystis disease virus (LCDV). Fish Shellfish Immunol 30:525–531

    Article  CAS  PubMed  Google Scholar 

  • Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162

    CAS  PubMed  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF (1998) Voellmy R Repression of heat shock transcription factor HSF1 by HSP90 (HSP90 complex) that forms a stress- sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Modern Agriculture Industrial Technology System Special Project, the National Technology System for Conventional Freshwater Fish Industries (CARS-46), and the Special Scientific Research Funds for Central Non-profit Institutes, Chinese Academy of Fishery Sciences (2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanting Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Liu, B., Xie, J. et al. Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 40, 721–729 (2014). https://doi.org/10.1007/s10695-013-9879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9879-2

Keywords

Navigation