Skip to main content
Log in

Characterization of carboxylesterase in skin mucus of Cirrhinus mrigala and its assessment as biomarker of organophosphate exposure

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Presence of carboxylesterase (CbE) activity in the skin mucus of Cirrhinus mrigala was investigated. CbE activity in skin mucus showed higher substrate preference for α-naphthyl acetate over p-nitrophenyl acetate. Four CbE isozymes—CbE-1, CbE-2, CbE-3, and CbE-4 were observed in skin mucus during zymography. The isozyme CbE-4 was characterized as typical serine esterase, whereas CbE-1, CbE-2, and CbE-3 were identified as sulphhydryl group-dependent serine esterases. In vitro treatment of skin mucus with the organophosphorus insecticide, Nuvan® showed strong inhibition of CbE activity. In vivo exposure of the fish to sublethal test concentrations (5 and 15 mg/l) of the insecticide also revealed significant inhibition of CbE activity in mucus. After the cessation of exposure, CbE activity recovered to its control level during the recovery periods. Thus, CbE activity in skin mucus could be considered a biomarker of the organophosphorus insecticide exposure to fish and a useful tool in monitoring environmental toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldridge WN (1953) Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem J 53:110–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alpuche-Gual L, Gold-Bouchot G (2008) Determination of esterase activity and characterization of cholinesterases in the reef fish Haemulon plumieri. Ecotoxicol Environ Safe 71:787–797

    Article  Google Scholar 

  • APHA, AWWA, WPCF (1985) Standard methods for the examination of water and waste water, 16 Ed. American Public Health Association, Washington

  • Arillo A, Melodia F (1990) Protective effect of fish mucus against Cr (VI) pollution. Chemosphere 20:397–402

    Article  CAS  Google Scholar 

  • Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, Redinbo MR (2003) Crystal structure of human carboxylesterase 1 complexed with the Alzheimer’s drug tacrine: from binding promiscuity to selective inhibition. Chem Biol 10:341–349

    Article  CAS  PubMed  Google Scholar 

  • Boone JS, Chambers JE (1996) Time course of inhibition of cholinesterase and aliesterase activities, and nonprotein sulfhydryl levels following exposure to organophosphorus insecticides in mosquitofish (Gambusia affinis). Fundam Appl Toxicol 29:202–207

    Article  CAS  PubMed  Google Scholar 

  • Boone JS, Chambers JE (1997) Biochemical factors contributing to toxicity differences among chlorpyrifos, parathion, and methyl parathion in mosquito fish (Gambusia affinis). Aquat Toxicol 39:333–343

    Article  CAS  Google Scholar 

  • Carr RL, Ho LL, Chambers JE (1997) Selective toxicity of chlorpyrifos to several species of fish during an environmental exposure: biochemical mechanisms. Environ Toxicol Chem 16:2369–2374

    Article  CAS  Google Scholar 

  • Chambers JE, Chambers HW (1990) Time course of inhibition of acetylcholinesterase and aliesterases following parathion and paraoxon exposures in rats. Toxicol Appl Pharmacol 103:420–429

    Article  CAS  PubMed  Google Scholar 

  • Chambers J, Oppenheimer SF (2004) Organophosphates, serine esterase inhibition, and modeling of organophosphate toxicity. Toxicol Sci 77:185–187

    Article  CAS  PubMed  Google Scholar 

  • Chanda SM, Mortensen SR, Moser VC, Padilla S (1997) Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: an in vitro and in vivo comparison. Fundam Appl Toxicol 38:148–157

    Article  CAS  PubMed  Google Scholar 

  • Clement JG (1984a) Importance of aliesterase as a detoxification mechanism for soman (pinacolyl methylphosphonofluoridate) in mice. Biochem Pharmacol 33:3807–3811

    Article  CAS  PubMed  Google Scholar 

  • Clement JG (1984b) Role of aliesterase in organo-phosphate poisoning. Fundam Appl Toxicol 4:S96–S105

    Article  CAS  PubMed  Google Scholar 

  • Costa LG (2006) Current issues in organophosphate toxicology. Clin Chim Acta 366(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  • Denton DL, Wheelock CE, Murray SA, Deanovic LA, Hammock BD, Hinton DE (2003) Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (Pimephales promelas). Environ Toxicol Chem 22:336–341

    Article  CAS  PubMed  Google Scholar 

  • Hamilton FB (1822) An account of fishes found in the river Ganges and its branches. Edinburg and London I-VIII

  • Integrated Taxonomy Information System (2008) Cirrhinus mrigala: taxonomic serial number 163679, retrieved (December 30, 2008) from the Integrated Taxonomy Information System. http://www.itis.gov

  • Jokanović M, Kosanovic M, Maksimovic M (1996) Interaction of organophosphorus compounds with carboxylesterases in the rat. Arch Toxicol 70:444–450

    Article  PubMed  Google Scholar 

  • Karanth S, Pope C (2000) Carboxylesterase and A-esterase activities during maturation and aging: relationship to the toxicity of chlorpyrifos and parathion in rats. Toxicol Sci 58:282–289

    Article  CAS  PubMed  Google Scholar 

  • Kumari U, Nigam AK, Mittal S, Mittal AK (2011) Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus. Eur Rev Med Pharmacol Sci 15:781–786

    CAS  PubMed  Google Scholar 

  • Küster E (2005) Cholin- and carboxylesterase activities in developing zebrafish embryos (Danio rerio) and their potential use for insecticide hazard assessment. Aquat Toxicol 75:76–85

    Article  PubMed  Google Scholar 

  • Küster E, Altenburger R (2006) Comparison of cholin- and carboxylesterase enzyme inhibition and visible effects in the zebra fish embryo bioassay under short-term paraoxon-methyl exposure. Biomarkers 11:341–354

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Masson D, Nabholz M, Estrade C, Tschopp J (1986) Granules of cytolytic T-lymphocytes contain two serine esterases. EMBO J 5(7):1595–1600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maxwell DM (1992) The specificity of carboxylesterase protection against the toxicity of organophosphorus compounds. Toxicol Appl Pharmacol 114:306–312

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Whitear M (1978) Note on cold anesthesia of poikilotherms. J Fish Biol 13:519–520

    Article  Google Scholar 

  • Nigam AK, Kumari U, Mittal S, Mittal AK (2012a) Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches. Fish Physiol Biochem 38:1245–1256

    Article  CAS  PubMed  Google Scholar 

  • Nigam AK, Srivastava N, Rai AK, Kumari U, Mittal AK, Mittal S (2012b) The first evidence of cholinesterases in skin mucus of carps and its applicability as biomarker of organophosphate exposure. Environ Toxicol. doi:10.1002/tox.21807

  • O’Neill AJ, Galloway TS, Browne MA, Dissanayake A, Depledge MH (2004) Evaluation of toxicity in tributaries of the Mersey estuary using the isopod Asellus aquaticus (L.). Mar Environ Res 58:327–331

    Article  PubMed  Google Scholar 

  • Palaksha KJ, Shin GW, Kim YR, Jung TS (2008) Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 24:479–488

    Article  CAS  PubMed  Google Scholar 

  • Pretti C, Cognetti-Varriale AM (2001) The use of biomarkers in aquatic biomonitoring: the example of esterases. Aquat Conserv 11:299–303

    Article  Google Scholar 

  • Ross NW, Firth KJ, Wang A, Burka JF, Johnson SC (2000) Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis Aquat Organ 41:43–51

    Article  CAS  PubMed  Google Scholar 

  • Shephard KL (1994) Functions for fish mucus. Rev Fish Biol Fisher 4:401–429

    Article  Google Scholar 

  • Singh SK (1986) Histochemistry of the epidermis of certain carps. Ph.D. thesis, Banaras Hindu University, Varanasi, India

  • Srivastava N, Rai AK, Kumari U, Mittal S, Mittal AK (2012) Behavioural dysfunctions in relation to the toxicity of ‘Nuvan®’, an organophosphorus insecticide in an Indian Major Carp, Cirrhinus mrigala. Res Environ Life Sci 5:245–250

    Google Scholar 

  • Subramanian S, MacKinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B 148:256–263

    Article  PubMed  Google Scholar 

  • Sun A, Faulds CB, Bamforth CW (2005) Barley contains two cationic acetylxylan esterases and one anionic feruloyl esterase. Cere Chem 82:621–625

    Article  CAS  Google Scholar 

  • Tang J, Chambers JE (1999) Detoxication of paraoxon by rat liver homogenate and serum carboxylesterases and A-esterases. J Biochem Mol Toxicol 13:261–268

    Article  CAS  PubMed  Google Scholar 

  • Thompson HM (1999) Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology 8:369–384

    Article  CAS  Google Scholar 

  • Trídico CP, Rodrigues ACF, Nogueira L, da Silva DC, Moreira AB, de Almeida EA (2010) Biochemical biomarkers in Oreochromis niloticus exposed to mixtures of benzo[a]pyrene and diazinon. Ecotoxicol Environ Safe 73:858–863

    Article  Google Scholar 

  • Tu HT, Silvestre F, Scippo M-L, Thome J-P, Phoung NT, Kestemont P (2009) Acetylcholinesterase activity as a biomarker of exposure to antibiotics and pesticides in the black tiger shrimp (Penaeus monodon). Ecotoxicol Environ Safe 72:1463–1470

    Article  CAS  Google Scholar 

  • Varó I, Navarro JC, Amat F, Guilhermino L (2003) Effect of dichlorvos on cholinesterase activity of the european sea bass (Dicentrarchus labrax). Pestic Biochem Physiol 75(3):61–72

    Article  Google Scholar 

  • Varó I, Amat F, Navarro JC (2008) Acute toxicity of dichlorvos to Aphanius iberus (Cuvier & Valenciennes, 1846) and its anti-cholinesterase effects on this species. Aquat Toxicol 88(1):53–61

    Article  PubMed  Google Scholar 

  • Webb EC (1964) The nomenclature of multiple enzyme forms. Experientia 20:592

    Article  CAS  PubMed  Google Scholar 

  • Wheelock CE, Nakagawa Y (2010) Carboxylesterases—from function to the field: an overview of carboxylesterase biochemistry, structure-activity relationship, and use in environmental field monitoring. J Pestic Sci 35:215–217

    Article  Google Scholar 

  • Wheelock CE, Shan G, Ottea J (2005) Overview of carboxylesterases and their role in the metabolism of insecticides. J Pestic Sci 30:75–83

    Article  CAS  Google Scholar 

  • Wheelock CE, Phillips BM, Anderson BS, Miller JL, Miller MJ, Hammock BD (2008) Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Rev Environ Contam Toxicol 195:117–178

    CAS  PubMed  Google Scholar 

  • Wogram J, Sturm A, Segner H, Liess M (2001) Effects of parathion on acetylcholinesterase, butyrylcholinesterase, and carboxylesterase in three-spined stickleback (Gasterosteus aculeatus) following short-term exposure. Environ Toxicol Chem 20:1528–1531

    Article  CAS  PubMed  Google Scholar 

  • Xing H, Wang J, Li J, Fan Z, Wang M, Xu S (2010) Effects of atrazine and chlorpyrifos on acetylcholinesterase and carboxylesterase in brain and muscle of common carp. Environ Toxicol Pharmacol 30:26–30

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Yang D, Brady M, Parkinson A (1994) Rat kidney carboxylesterase. Cloning, sequencing, cellular localization, and relationship to rat liver hydrolase. J Biol Chem 269:29688–29696

    CAS  PubMed  Google Scholar 

  • Yang ZP, Dettbarn WD (1998) Prevention of tolerance to the organophosphorus anticholinesterase paraoxon with carboxylesterase inhibitors. Biochem Pharmacol 55:1419–1426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ashwini Kumar Nigam was supported as Junior Research Fellow and then as Senior Research Fellow under the CSIR-NET Fellowship Scheme, Council of Scientific and Industrial Research, Government of India. Usha Kumari is supported as Senior Research Associate sponsored by the Council of Scientific and Industrial Research, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Mittal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigam, A.K., Kumari, U., Mittal, S. et al. Characterization of carboxylesterase in skin mucus of Cirrhinus mrigala and its assessment as biomarker of organophosphate exposure. Fish Physiol Biochem 40, 635–644 (2014). https://doi.org/10.1007/s10695-013-9872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9872-9

Keywords

Navigation