Skip to main content
Log in

Ultrastructure of the anterior intestinal epithelia of the orange-spotted grouper Epinephelus coioides larvae under different feeding regimes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Enterocytes of the anterior to midsection of the intestine in grouper Epinephelus coioides larvae were compared among different treatments: unfed to the point-of-no-return (PNR), fed natural food only, and co-fed natural food and artificial diet. On day 3, the nutritional condition of unfed grouper larvae regressed with its reduced enterocyte heights which were further degraded on day 4, the PNR, when all the enterocytes were in advanced stages of apoptosis. The apoptosis appeared to be internally directed via the mitochondria. Among day 3 fed larvae, enterocyte heights of those fed artificial diet did not differ from those fed natural food only. Dietary phospholipid deficiency was indicated in larvae co-fed artificial diet on day 3 with an unusually large chylomicron opening into the inter-enterocyte space, and on days 6 and 33 by intestinal steatosis. On day 19, scant to absent lipid droplets in enterocytes of larvae disclosed heightened nutritional requirement preparatory to metamorphosis. As observed in unfed day 3 and premetamorphic day 19 E. coioides, larvae undergoing critical periods and starvation during development employ apoptosis to dispose of degenerated enterocytes that are phagocytosed by adjacent healthy enterocytes without causing inflammatory distress. Upon metamorphosis, grouper larval gut develops better immunity fitness with eosinophilic granule cells observed in the intestinal epithelia of day 33 larvae. Future studies on grouper larval nutrition may consider the appropriate dietary phospholipid levels and larval competence to biosynthesize highly unsaturated fatty acid from linoleic acid vis-à-vis the use of plant ingredients in artificial diet formulations. In vivo challenge tests may validate appropriate dietary nutrient supplementation and lead to better feed formulation, matching the varying energetic demands and digestive capacities of developing E. coioides larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • AOAC (1980) Official Methods of Analysis of the AOAC. In: Horwitz W (ed), 13th edn. The Association of Official Analytical Chemists. 1038 p. http://ia600303.us.archive.org/22/items/gov.law.aoac.methods.1980/aoac.methods.1980.pdf Accessed 13 Aug 2013

  • Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386

    Article  CAS  PubMed  Google Scholar 

  • Blaxter JHS, Hempel G (1963) The influence of egg size on herring larvae (Clupea harengus L.). ICES J Mar Sci 28:211–240

    Article  Google Scholar 

  • Cahu CL, Zambonino Infante JL, Barbosa V (2003) Phospholipid level in dietary lipid fraction is determining for sea bass (Dicentrarchus labrax) larval development. Br J Nutr 90:21–28

    Article  CAS  PubMed  Google Scholar 

  • Cahu CL, Gisbert E, Villeneuve LA, Morais S, Hamza N, Wold P-A, Zambonino Infante JL (2009) Influence of dietary phospholipids on early ontogenesis of fish. Aquac Res 40:989–999

    Article  CAS  Google Scholar 

  • Calzada A, Medina A, Gonzales ML (1998) Fine structure of the intestine development in cultured sea bream larvae. J Fish Biol 53:340–365

    Article  Google Scholar 

  • Cunha ME, Quental H, Barradas A, Pousao-Ferreira P, Cabrita E, Engrola S (2009) Rearing larvae of dusky grouper, Epinephelus marginatus (Lowe, 1834), (Pisces:Serranidae) in a semi extensive mesocosm. Sci Mar 73S1:201–212. doi:10.3989/scimar.2009.73s1201

    Article  Google Scholar 

  • Dapra F, Geurden I, Corraze G, Bazin D, Zambonino Infante JL, Fontagne-Dicharry S (2011) Physiological and molecular responses to dietary phospholipids vary between fry and early juvenile stages of rainbow trout (Oncorhynchus mykiss). Aquaculture 319:377–384

    Article  CAS  Google Scholar 

  • Deplano M, Connes R, Diaz JP, Paris J (1989) Intestinal steatosis in the farm-reared sea bass Dicentrarchus labrax. Dis Aquat Org 6:121–130

    Article  Google Scholar 

  • Diaz J-P, Guyot E, Vigier S, Connes R (1997) First events in lipid absorption during post-embryonic development of the anterior intestine in gilt-head seabream. J Fish Biol 51:180–192

    Article  CAS  PubMed  Google Scholar 

  • Diaz J-P, Mani-Ponset L, Blasco C, Connes R (2002) Cytological detection of the main phases of lipid metabolism during early post-embryonic development in three teleost species: Dicentrarchus labrax, Sparus aurata and Stizostedion lucioperca. Aquat Living Resour 15:169–178

    Article  Google Scholar 

  • Duray MN, Estudillo CB, Alpasan LG (1996) The effect of background color and rotifer density on rotifer intake, growth and survival of the grouper (Epinephelus suillus) larvae. Aquaculture 146:217–224

    Article  Google Scholar 

  • Duray MN, Estudillo CB, Alpasan LG (1997) Larval rearing of the grouper Epinephelus suillus under laboratory conditions. Aquaculture 115:361–367

    Google Scholar 

  • Elbal MT, Garcia Hernandez MP, Lozano MT, Aguilleiro B (2004) Development of the digestive tract of gilthead seabream (Sparus aurata L.). Light and electron microscopic studies. Aquaculture 234:215–238

    Article  Google Scholar 

  • Eusebio PS, Toledo JD, Mamauag REP, Bernas MJG (2004) Digestive enzyme activity in developing grouper (Epinephelus coioides) larvae. In: Williams KC, Rimmer MA, McBride S (eds) Advances in grouper aquaculture. ACIAR, Canberra, pp 35–40

    Google Scholar 

  • FAOSTAT (2009) Grouper aquaculture, capture and global production. http://www.fao.org/fishery/statistics/en. Accessed 15 Nov 2011

  • Frøyland L, Madsen L, Vaagenes H, Totland GK, Auwerx J, Kryvi H, Staels B, Berge RK (1997) Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism. J Lipid Res 38:1851–1858

    PubMed  Google Scholar 

  • Gisbert E, Villeneuve L, Zambonino-Infante JL, Quazuguel P, Cahu CL (2005) Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 40(6):609–618

    Article  CAS  PubMed  Google Scholar 

  • Gisbert E, Ortiz-Delgado JB, Sarasquete MC (2008) Nutritional cellular biomarkers in early life stages of fish. Histol Histopathol 23:1525–1539

    CAS  PubMed  Google Scholar 

  • Hamre K (2006) Nutrition in cod (Gadus morhua) larvae and juveniles. ICES J Mar Sci 63:267–274

    Article  Google Scholar 

  • Iwai T (1968) The comparative study of the digestive tract of teleost larvae-V. Fat absorption in the gut epithelium of goldfish larvae. Bull Jpn Soc Sci Fish 34(11):973–978

    Article  Google Scholar 

  • Iwai T (1969) Fine structure of gut epithelial cells of larval and juvenile carp during absorption of fat and protein. Arch Histol Jpn 30(2):183–199

    Article  CAS  PubMed  Google Scholar 

  • Iwai T, Tanaka M (1968) The comparative study of the digestive tract of teleost larvae-IV. Absorption of fat by the gut of halfbeak larvae. Bull Jpn Soc Sci Fish 34(10):871–875

    Article  Google Scholar 

  • Izquierdo MS, Socorro J, Arantzamendi L, Hernandez-Cruz CM (2000) Recent advances in lipid nutrition in fish larvae. Fish Physiol Biochem 22:97–107

    Article  CAS  Google Scholar 

  • Jones BA, Gores GJ (1997) Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas and intestine. Am J Physiol Gastrointest Liver Physiol 273:G1174–G1188

    CAS  Google Scholar 

  • Kjørsvik E, Van der Meeren T, Kryvi H, Arnfinnson J, Kvenseth PG (1991) Early development of the digestive tract of cod larvae, Gadus morhua L., during start-feeding and starvation. J Fish Biol 38:1–15

    Article  Google Scholar 

  • Kuz’mina VV, Gelman AG (1997) Membrane-linked digestion in fish. Rev Fish Sci 5(2):99–129

    Article  Google Scholar 

  • Lazo JP, Darias MJ, Gisbert E (2010) New approaches to assess the nutritional condition of marine fish larvae. In: Cruz-Suarez LE, Ricque–Marie D, Tapia-Salazar M, Nieto-Lopez MG, Villareal-Cavazos DA, Gamboa-Delgado J (eds) Avances en nutrición acuícola X- memorias del X Simposio Internacional de Nutrición Acuícola, 8–10 de Nov, San Nicolas de los Garza, NL México. Universidad Autónoma de Nuevo de León, Monterrey, México, pp 283–296

  • Li WS, Chen D, Wong AOL, Lin HR (2005) Molecular cloning, tissue distribution, and ontogeny of mRNA expression of growth hormone in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 144:78–89

    Article  CAS  PubMed  Google Scholar 

  • Liao IC, Su HM, Chang EY (2001) Techniques in finfish larviculture in Taiwan. Aquaculture 200:1–31

    Article  Google Scholar 

  • MacQueen Leifson R, Homme JM, Jøstensen JP, Lie O, Myklebust R, Strøm T (2003) Phospholipids in formulated start-feeds- effect on turbot (Scophthalmus maximus L.) larval growth and mitochondrial alteration in enterocytes. Aquac Nutr 9:43–54

    Article  Google Scholar 

  • Mani-Ponset L, Diaz JP, Schlumberger O, Connes R (1994) Development of yolk complex, liver and anterior intestine in pike perch larvae, Stizostedion lucioperca (Percidae), according to the first diet during rearing. Aquat Living Resour 7:191–202

    Article  Google Scholar 

  • McBride S (2004) The activity of digestive enzymes in larval grouper and live feed. In: Rimmer MA, McBride S, Williams KC (eds) Advances in grouper aquaculture. ACIAR, Canberra, pp 41–46

    Google Scholar 

  • McFadzen IRB, Lowe DM, Coombs SH (1994) Histological changes in starved turbot larvae (Scophthalmus maximus) quantified by digital image analysis. J Fish Biol 44:255–262

    Article  Google Scholar 

  • Morais S, Conceicao LEC, Ronnestad I, Koven W, Cahu C, Zambonino Infante JL, Dinis MT (2007) Dietary neutral lipid level and source in marine fish larvae: effects on digestive physiology and food intake. Aquaculture 268:106–122

    Article  CAS  Google Scholar 

  • Mulero I, Pilar Sepulcre N, Meseguer J, Garcia-Ayala A, Mulero V (2007) Histamine is stored in mast cells of most evolutionarily advanced fish and regulates the fish inflammatory response. Proc Natl Acad Sci USA 104:19434–19439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niu J, Liu YJ, Tian LX, Mai KS, Yang HJ, Ye CX, Zhu Y (2008) Effects of dietary phospholipid level in cobia (Rachycentron canadum) larvae: growth, survival, plasma lipids and enzymes of lipid metabolism. Fish Physiol Biochem 34:9–17. doi:10.1007/s10695-007-9140-y

    Article  CAS  PubMed  Google Scholar 

  • O’Conell CP (1976) Histological criteria for diagnosing the starving condition in early post yolk sac larvae of the northern anchovy, Engraulis mordax Girard. J Exp Mar Biol Ecol 25:285–312

    Article  Google Scholar 

  • Olsen RE, Myklebust R, Kaino T, Ringø E (1999) Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol Biochem 21:35–44

    Article  CAS  Google Scholar 

  • Olsen RE, Myklebust R, Ringø E, Mayhew TM (2000) The influences of dietary linseed oil and saturated fatty acids on caecal enterocytes in Arctic char (Salvelinus alpinus L.): a quantitative ultrastructural study. Fish Physiol Biochem 22:207–216

    Article  CAS  Google Scholar 

  • Ordonio-Aguilar RS (1995) Survival mechanisms of tropical marine fish larvae during changeover from endogenous to exogenous feeding. Dissertation, Tokyo University of Fisheries

  • Ordonio-Aguilar R, Kohno H, Ohno A, Moteki M, Taki Y (1995) Development of grouper, Epinephelus coioides, larvae during changeover of energy sources. J Tokyo Univ Fish 82:103–108

    Google Scholar 

  • Phleger CF (1998) Buoyancy in marine fishes: direct and indirect role of lipids. Am Zool 38:321–330

    CAS  Google Scholar 

  • Piper RC, Katzmann DJ (2007) Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol 23:519–547. doi:10.1146/annurev.cellbio.23.090506.123319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qu M, Ding S, Xu X, Shen M, You Y, Su Y (2012) Ontogenetic development of the digestive system and growth in coral trout (Plectropomus leopardus). Aquaculture 334–337:132–141

    Article  Google Scholar 

  • Quinitio GF, Sa-an AC, Toledo JD, Tan-Fermin JD (2004a) Changes in the gastrointestinal tract and associated organs during early development of the grouper (Epinephelus coioides). In: Rimmer MA, McBride S, Williams KC (eds) Advances in grouper aquaculture. ACIAR, Canberra, pp 26–29

    Google Scholar 

  • Quinitio GF, Sa-an AC, Toledo JD, Tan-Fermin JD (2004b) Localisation of enzymes in the digestive system during early development of the grouper (Epinephelus coioides). In: Rimmer MA, McBride S, Williams KC (eds) Advances in grouper aquaculture. ACIAR, Canberra, pp 30–34

    Google Scholar 

  • Reinecke M, Muller C, Segner H (1997) An immunohistochemical analysis of the ontogeny, distribution and coexistence of 12 regulatory peptides and serotonin in endocrine cells and nerve fibers of the digestive tract of the turbot, Scophthalmus maximus (Teleostei). Anat Embryol 195:87–101. doi:10.1007/S004290050028

    Article  CAS  PubMed  Google Scholar 

  • Rimmer MA, McBride S, Williams KC (2004) Advances in grouper aquaculture. ACIAR, Canberra

    Google Scholar 

  • Ringø E, Olsen RE, Mayhew TM, Myklebust R (2003) Electron microscopy of the intestinal microflora of fish. Aquaculture 227:395–415

    Article  Google Scholar 

  • Ringø E, Myklebust R, Mayhew TM, Olsen RE (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268:251–264

    Article  Google Scholar 

  • Russo T, Boglione C, De Marzi P, Cataudella S (2009) Feeding preferences of the dusky grouper (Epinephelus marginatus, Lowe 1834) larvae reared in semi-intensive conditions: a contribution addressing the domestication of this species. Aquaculture 289:289–296

    Article  Google Scholar 

  • Rust MB (2002) Nutritional physiology. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, pp 367–452

    Google Scholar 

  • Sadovy YJ, Donaldson TJ, Graham TR, McGilvray F, Muldoon GJ, Phillips MJ, Rimmer MA, Smith A, Yeeting B (2003) While stocks last: the live reef food fish trade. Asian Development Bank, Manila

    Google Scholar 

  • Sarasquete MC, Polo A, Yufera M (1995) Histology and histochemistry of the development of the digestive system of larval gilthead seabream, Sparus aurata L. Aquaculture 130:79–92

    Article  Google Scholar 

  • Sarker MAA, Yamamoto Y, Haga Y, MSA Sarker, Miwa M, Yoshizaki G, Satoh S (2011) Influences of low salinity and dietary fatty acids on fatty acid desaturase and elongase expression in red sea bream Pagrus major. Fish Sci 77:385–396

    Article  CAS  Google Scholar 

  • Segner H, Rösch R, Verreth J, Witt U (1993) Larval nutritional physiology: studies with Clarias gariepinus, Coregonus lavaretus and Scophthalmus maximus. J World Aquac Soc 24(2):121–133

    Article  Google Scholar 

  • Sire M-F, Lutton C, Vernier J-M (1981) New views on intestinal absorption of lipids in teleostean fishes: an ultrastructural and biochemical study in the rainbow trout. J Lipid Res 22:81–94

    CAS  PubMed  Google Scholar 

  • Sternini C, Anselmi L, Rozengurt E (2008) Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 15:73–78. doi:10.1097/MED.0b013e3282f43a73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suen D-F, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sumule O, Koshio S, Teshima S, Ishikawa M (2003) Energy budget of the Japanese flounder Paralichthys olivaceus (Temminck and Schlegel) larvae fed HUFA-enriched and non-enriched Artemia nauplii. Aquac Res 34:877–886

    Article  CAS  Google Scholar 

  • Sun Y, Yang H, Ling Z, Chang J, Ye J (2009) Gut microbiota of fast and slow growing grouper Epinephelus coioides. Afr J Microbiol Res 3(11):713–720

    Google Scholar 

  • Theilacker GH, Watanabe Y (1989) Midgut cell height defines nutritional status of laboratory raised larval northern anchovy, Engraulis mordax. Fish Bull 87:457–469

    Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184

    Article  CAS  Google Scholar 

  • Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732

    Article  CAS  Google Scholar 

  • Tocher DR, Bendiksen EA, Campbell PJ, Bell GJ (2008) The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280:21–34

    Article  CAS  Google Scholar 

  • Toledo JD, Golez, Doi M, Ohno A (1999) Use of copepod nauplii during early feeding stage of grouper Epinephelus coioides. Fish Sci 65:390–397

    CAS  Google Scholar 

  • Yamaoka K, Nanbu T, Miyagawa M, Isshiki T, Kusaka A (2000) Water surface tension-related deaths in prelarval red-spotted grouper. Aquaculture 189:165–176

    Article  Google Scholar 

  • Zambonino Infante JL, Cahu CL (2007) Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268:98–105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Commission on Higher Education, the Philippine Council for Agriculture, Aquatic Natural Resources Research and Development and the Science Education Institute of the Department of Science and Technology, and the Bureau of Agricultural Research-Department of Agriculture of the Government of the Philippines for financial support (extended to Y.H. Primavera-Tirol) and to the Southeast Asian Fisheries Development Center-Aquaculture Department for the use of its aquaculture facilities. Thanks are given to V. Balinas for statistical advice, to T. Billena-Hagy, C. Sombito, and N. Bautista for technical assistance with the transmission electron microscopy, and to I. Tendencia for the artwork. Helpful advice from two anonymous reviewers that improved the manuscript is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Primavera-Tirol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Primavera-Tirol, Y.H., Coloso, R.M., Quinitio, G.F. et al. Ultrastructure of the anterior intestinal epithelia of the orange-spotted grouper Epinephelus coioides larvae under different feeding regimes. Fish Physiol Biochem 40, 607–624 (2014). https://doi.org/10.1007/s10695-013-9870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9870-y

Keywords

Navigation