Skip to main content
Log in

Establishment of testicular and ovarian cell lines from Honmoroko (Gnathopogon caerulescens)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 08 January 2013

Abstract

We succeeded to establish cell lines from endemic fish species Honmoroko Gnathopogon caerulescens, which inhabits Lake Biwa, the third oldest lake in the world. Two cell lines designated as RMT1 and RMO1 were established from testis and ovary of G. caerulescens, respectively. These cell lines were initially cultured in Leibovitz’s L-15 medium supplemented with fetal bovine serum (FBS), fish embryo extract, epidermal growth factor, and basic fibroblast growth factor. Further addition of forskolin and β-mercaptoethanol was required to establish and maintain these cell lines for more than 60 passages. RMT1 and RMO1 cells showed fibroblast- and epithelial-like morphology, respectively. From immunocytochemical staining and gene expression patterns, RMT1 cells showed a characteristic of testicular Sertoli cells and RMO1 cells did that of ovarian theca cells. Both RMT1 and RMO1 cells multiplied well in the medium supplemented with 10 % FBS at 28 °C and their minimum population doubling times were 24.4 and 28.8 h, respectively. At the 45th passage, most of the RMT1 and RMO1 cells had a hyperploid set of chromosomes (67.3 and 96.1 %, respectively). Cells with normal diploid chromosome set were not observed. RMT1 cells were transfected with an enhanced green fluorescent protein (EGFP) expression vector and human elongation factor 1 α promoter worked efficiently to express EGFP. In addition, EGFP-expressing cell lines were also established, suggesting that the cell lines could be utilized as an in vitro monitor system (biosensor) for the evaluation of endocrine disruptors which might affect gonadal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bols NC, Lee LEJ (1991) Technology and uses of cell cultures from the tissues and organs of bony fish. Cytotechnology 6:163–187. doi:10.1007/BF00624756

    Article  PubMed  CAS  Google Scholar 

  • Bowser PR, Plumb JA (1980) Fish cell lines: establishment of a line from ovaries of channel catfish. In Vitro Cell Dev Biol 16:365–368. doi:10.1007/BF02618357

    CAS  Google Scholar 

  • Bunton TE (1995) Development of an aquatic bioassay using the medaka (Oryzias latipes) to assess human health risk: tumor immunodiagnosis. The defense technical information center (DTIC). http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA289837. Accessed 12 Sep 2012

  • Chiang EFL, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B (2001) Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol 231:149–163. doi:10.1006/dbio.2000.0129

    Article  PubMed  CAS  Google Scholar 

  • Fraser C, Hall M (1999) Studies on primary cell cultures derived from ovarian tissue of Penaeus monodon. Methods Cell Sci 21:213–218. doi:10.1023/A:1009851809288

    Article  PubMed  CAS  Google Scholar 

  • Fryer J, Lannan C (1994) Three decades of fish cell culture: a current listing of cell lines derived from fishes. Methods Cell Sci 16:87–94. doi:10.1007/BF01404816

    Google Scholar 

  • Guo Y, Cheng H, Huang X, Gao S, Yu H, Zhou R (2005) Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1. Biochem Biophys Res Commun 330:950–957. doi:10.1016/j.bbrc.2005.03.066

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT, Foster PM, Gray CL, Gray LE (2008) Fifteen years after “wingspread”—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 105:235–259. doi:10.1093/toxsci/kfn030

    Article  PubMed  CAS  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69–82. doi:10.1016/j.cell.2007.03.026

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Saito K, Sakai C, Shinya M, Sakai N (2012) Production of zebrafish offspring from cultured spermatogonial stem cells. Genes Cells 17:316–325. doi:10.1111/j.1365-2443.2012.01589.x

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Kajiura-Kobayashi H, Nagahama Y (2002) Two isoforms of vasa homologs in a teleost fish: their differential expression during germ cell differentiation. Mech Dev 111:167–171. doi:10.1016/S0925-4773(01)00613-X

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Kajiura-Kobayashi H, Guan G, Nagahama Y (2008) Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Dev Dyn 237:297–306. doi:10.1002/dvdy.21409

    Article  PubMed  CAS  Google Scholar 

  • Ku C, Chen SN (1992) Characterization of three cell lines derived from color carp Cyprinus caprio. J Tiss Cult Meth 14:63–72. doi:10.1007/BF01404746

    Article  Google Scholar 

  • Ku C, Teng YC, Wang CS, Lu C (2009) Establishment and characterization of three cell lines derived from the rockfish grouper Epinephelus quoyanus: use for transgenic studies and cytotoxicity testing. Aquaculture 294:147–151. doi:10.1016/j.aquaculture.2009.05.010

    Article  CAS  Google Scholar 

  • Lakra W, Swaminathan TR, Joy K (2011) Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol Biochem 37:1–20. doi:10.1007/s10695-010-9411-x

    Article  PubMed  CAS  Google Scholar 

  • Lannan CN, Winton JR, Fryer J (1984) Fish cell lines: establishment and characterization of nine cell lines from salmonids. In Vitro Cell Dev Biol 20:671–676. doi:10.1007/BF02618871

    CAS  Google Scholar 

  • Li M, Stewart JE (1965) A quantitative study of the effects of naturally occurring supplements on the growth of rainbow trout (Salmo gairdneri) gonadal cells. Can J Microbiol 11:9–14. doi:10.1139/m65-002

    Article  PubMed  CAS  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15. doi:10.1002/jcp.10119

    Article  PubMed  CAS  Google Scholar 

  • Mauger PE, Labbé C, Bobe J, Cauty C, Leguen L, Baffet G, Le Bail PY (2009) Characterization of goldfish fin cells in culture: some evidence of an epithelial cell profile. Comp Biochem Physiol B Biochem Mol Biol 152:205–215. doi:10.1016/j.cbpb.2008.11.003

    Article  PubMed  Google Scholar 

  • Mohapatra S, Liu Z, Zhou L, Zhang Y, Wang D (2011) Molecular cloning of Wt1a and Wt1b and their possible involvement in fish sex determination and differentiation. In: Joy KP, Inbaraj RM, Kirubagaran R, Chaube R (eds) Proceedings of 9th international symposium on reproductive physiology of fish, 9–14 Aug Cochin, India, pp 85–86

  • Nakamura M (1949) The life history of a cyprinid fish, Gnathopogon elongatus caerulescens (Sauvage) in Lake Biwa. Nippon Suisan Gakk 15:88–96

    Article  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199. doi:10.1016/0378-1119(91)90434-D

    Article  PubMed  CAS  Google Scholar 

  • Parameswaran V, Shukla R, Bhonde R, Hameed A (2006) Establishment of embryonic cell line from sea bass (Lates calcarifer) for virus isolation. J Virol Methods 137:309–316. doi:10.1016/j.jviromet.2006.07.006

    Article  PubMed  CAS  Google Scholar 

  • Parameswaran V, Ishaq Ahmed V, Shukla R, Bhonde R, Sahul Hameed A (2007) Development and characterization of two new cell lines from milkfish (Chanos chanos) and grouper (Epinephelus coioides) for virus isolation. Mar Biotechnol 9:281–291. doi:10.1007/s10126-006-6110-9

    Article  PubMed  CAS  Google Scholar 

  • Qin Q, Wu T, Jia T, Hegde A, Zhang R (2006) Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. J Virol Methods 131:58–64. doi:10.1016/j.jviromet.2005.07.009

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Marí A, Yan YL, BreMiller RA, Wilson C, Cañestro C, Postlethwait JH (2005) Characterization and expression pattern of zebrafish Anti-Müllerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns 5:655–667. doi:10.1016/j.modgep.2005.02.008

    Article  PubMed  Google Scholar 

  • Sakai N (2002) Transmeiotic differentiation of zebrafish germ cells into functional sperm in culture. Development 129:3359–3365

    PubMed  CAS  Google Scholar 

  • Sakai N (2006) In vitro male germ cell cultures of zebrafish. Methods 39:239–245. doi:10.1016/j.ymeth.2005.12.008

    Google Scholar 

  • Scholz S, Klüver N (2009) Effects of endocrine disrupters on sexual, gonadal development in fish. Sex Dev 3:136–151. doi:10.1159/000223078

    Article  PubMed  CAS  Google Scholar 

  • Seamon K, Daly J (1981) Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucl Res 7:201–224

    CAS  Google Scholar 

  • Song M, Gutzeit HO (2003) Primary culture of medaka (Oryzias latipes) testis: a test system for the analysis of cell proliferation and differentiation. Cell Tissue Res 313:107–115. doi:10.1007/s00441-003-0729-x

    Article  PubMed  Google Scholar 

  • Sun A, Fan T, Yang X, Xu B, Xu X, Guo X (2011) Establishment of a spleen cell line from large yellow croaker Pseudosciaena crocea and its primitive application in foreign gene transfection. J Ocean Univ China 10:397–401. doi:10.1007/s11802-011-1778-5

    Article  CAS  Google Scholar 

  • Takada T, Iida K, Awaji T, Itoh K, Takahashi R, Shibui A, Yoshida K, Sugano S, Tsujimoto G (1997) Selective production of transgenic mice using green fluorescent protein as a marker. Nat Biotechnol 15:458–461. doi:10.1038/nbt0597-458

    Article  PubMed  CAS  Google Scholar 

  • Thompson JS, Virtanen I, Lehto VP (1987) Intermediate filaments in normal tissues and lymphomas of northern pike, Esox lucius L., from the Åland Islands of Finland. J Comp Pathol 97:257–266. doi:10.1016/0021-9975(87)90089-2

    Article  PubMed  CAS  Google Scholar 

  • Tsuda T, Takino A, Kojima M, Harada H, Muraki K, Tsuji M (2000) 4-Nonylphenols and 4-tert-octylphenol in water and fish from rivers flowing into Lake Biwa. Chemosphere 41:757–762. doi:10.1016/S0045-6535(99)00465-8

    Article  PubMed  CAS  Google Scholar 

  • Ueno K, Ye Y, Umeoka T (1992) A comparative study of chromosomes in the cyprinid fish genera Gnathopogon and Squalidus of Japan. Nippon Suisan Gakk 58:1273–1277

    Article  Google Scholar 

  • Van Der Valk J, Brunner D, De Smet K, Fex Svenningsen Å, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino M (2010) Optimization of chemically defined cell culture media—replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063. doi:10.1016/j.tiv.2010.03.016

  • Wang X, Orban L (2007) Anti-Müllerian hormone and 11 β-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males. Dev Dyn 236:1329–1338. doi:10.1002/dvdy.21129

    Article  PubMed  CAS  Google Scholar 

  • Westerfield M (2007) Recipes-embryo extract. In: Westerfield M (ed) The zebrafish book, 5th edn. The University of Oregon Press, Eugene, p 10.4

  • Wolf K, Ahne W (1982) Fish cell culture. In: Maramorosch K (ed) Advances in cell culture, vol. 2. Academic Press, New York, pp 305–328

  • Wolf K, Mann JA (1980) Poikilotherm vertebrate cell lines and viruses: a current listing for fishes. In Vitro Cell Dev Biol 16:168–179. doi:10.1007/BF02831507

    CAS  Google Scholar 

  • Zhang B, Wang X, Sha Z, Yang C, Liu S, Wang N, Chen SL (2011) Establishment and characterization of a testicular cell line from the half-smooth tongue sole, Cynoglossus semilaevis. Int J Biol Sci 7:452–459. doi:10.7150/ijbs.7.452

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Liu L, Guo Y, Yu H, Cheng H, Huang X, Tiersch TR, Berta P (2003) Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol Reprod Dev 66:211–217. doi:10.1002/mrd.10271

    Article  PubMed  CAS  Google Scholar 

  • Zmuda J, Friedenson B (1983) Changes in intracellular glutathione levels in stimulated and unstimulated lymphocytes in the presence of 2-mercaptoethanol or cysteine. J Immunol 130:362–364

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Koji Ninomiya and Munezi Uziie, Shiga Prefectural Fisheries Experimental Station, for providing Honmoroko (Gnathopogon caerulescens). This work was funded in part by a Grant-in-Aid for challenging Exploratory Research (23651248 to T.T.), Scientific Research on Priority Area (21028021 to T.T.), and Young Scientists (B) (23700511 to S.H.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This study was also supported by NIG Collaborative Research Program (2010-A41, 2011-A36, 2012-A28 to T.T.) and Ritsumeikan Global Innovation Research Organization (R-GIRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuyuki Takada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higaki, S., Koyama, Y., Shirai, E. et al. Establishment of testicular and ovarian cell lines from Honmoroko (Gnathopogon caerulescens). Fish Physiol Biochem 39, 701–711 (2013). https://doi.org/10.1007/s10695-012-9733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9733-y

Keywords

Navigation