Skip to main content
Log in

Biochemical and histological changes in the liver tissue of rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of diazinon

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The organophosphate insecticide diazinon is widely used to control pest in Iran. The purpose of the present study was to investigate the antioxidant and histopathological changes in the liver tissue of rainbow trout (Oncorhynchus mykiss) exposed to 0.1 and 0.2 mg/L of a commercial formula of diazinon for a period of 28 days. Antioxidant enzyme activities—catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase—were determined after 7, 14 and 28 days of exposure. Histopathological analyses were performed at the 28th day. All antioxidant enzymes were induced after 7 days of diazinon treatment in both concentrations of diazinon. Catalase and superoxide dismutase maintained elevated activities during all the treatment period. Glutathione peroxidase activity returned to the control values at the 14th day, decreasing to values below control at the 28th day in both diazinon concentrations. Glutathione reductase maintained increased activities at the 14th day in the 0.1 mg/L diazinon, decreasing to control values at the 28th day. In the 0.2 mg/L group, the activity returned to control values at the 14th and decreased below the control at the 28th day. Total antioxidant capacity of hepatocytes significantly decreased in fishes exposed to diazinon during all experimental periods. Hypertrophy of hepatocytes, vacuolization of cell cytoplasm and hepatocyte cloudy swelling were observed in the liver tissue of fish exposed to both concentrations of diazinon. The results showed that diazinon altered the activity of antioxidant enzymes and the cellular total antioxidant capacity inducing oxidative stress and cellular damage in hepatocytes evidenced by histopathological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achuba FI, Osakwe SA (2003) Petroleum-induced free radical toxicity in African catfish (Clarias gariepinus). Fish Physiol Biochem 29:97–103. doi:10.1023/B:FISH.000035905.14420.eb

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 671–684

    Google Scholar 

  • Albanis T, Hela D, Sakellarides T, Konstantinou I (1998) Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. J Chromatogr A 823:59–71. doi:10.1016/S0021-9673(98)00304-5

    Article  PubMed  CAS  Google Scholar 

  • Allender WJ, Britt AG (1994) Analysis of liquid diazinon formulations and breakdown products: an Australia-wide survey. Bull Environ Contam Toxicol 53:902–906. doi:10.1007/BF00196222

    Article  PubMed  CAS  Google Scholar 

  • Arjmandi R, Tavakol M, Shayeghi M (2010) Determination of organophosphorus insecticide residues in the rice paddies. Int J Environ Sci Technol 7(1):175–182

    CAS  Google Scholar 

  • Aydın R, Köprücü K (2005) Acute toxicity of diazinon on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic Biochem Physiol 82:220–225. doi:10.1016/j.pestbp.2005.03.001

    Article  Google Scholar 

  • Bagheri F (2007) Study of pesticide residues (Diazinon, Azinphosmethyl) in the rivers of Golestan province (Gorgan Roud and Gharehsou), M.Sc. thesis, Tehran University of Medical Science. Tehran, Iran, pp 1–125

  • Bailey H, Deanovic L, Reyes E, Kimball T, Larson K, Cortright K, Connor V, Hinton D (2000) Diazinon and chlorpyrifos in urban waterways in northern California, USA. Environ Toxicol Chem 19:82–87. doi:10.1002/etc.5620190109

    Article  CAS  Google Scholar 

  • Banaee M (2012) Adverse effect of insecticides on various aspects of fish’s biology and physiology. In: Sonia Soloneski, Marcelo Larramendy (eds) Insecticides—basic and other applications book. InTech, Chapter 6, pp 101–126

  • Banaee M, Mirvagefei AR, Rafei GR, Majazi Amiri B (2008) Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. Int J Environ Res 2:189–198

    CAS  Google Scholar 

  • Banaee M, Sureda A, Mirvaghefi AR, Ahmadi K (2011) Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 99:1–6. doi:10.1016/j.pestbp.2010.09.001

    Article  CAS  Google Scholar 

  • Banks KE, Hunter DH, Wachal DJ (2005) Diazinon in surface waters before and after a federally-mandated ban. Sci Total Environ 350:86–93. doi:10.1016/j.scitotenv.2005.01.017

    Article  PubMed  CAS  Google Scholar 

  • Box A, Sureda A, Galgani F, Pons A, Deudero S (2007) Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comp Biochem Physiol C 146:531–539. doi:10.1016/j.cbpc.2007.06.006

    CAS  Google Scholar 

  • Bulletin of Agriculture Ministry of Iran (2008) Annual report of performance of the Ministry of Agriculture of Iran (2006–2007). pp 1–301

  • Cattaneo R, Loro VL, Spanevello R, Silveira FA, Luz L, Miron DS, Fonseca MB, Moraes BS, Clasen B (2008) Metabolic and histological parameters of silver catfish (Rhamdia quelen) exposed to commercial formulation of 2,4-dichlorophenoxiacetic acid (2,4-D) herbicide. Pestic Biochem Physiol 92:133–137. doi:10.1016/j.pestbp.2008.07.004

    Article  CAS  Google Scholar 

  • Cengiz EI, Unlu E (2006) Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish, Gambusia affinis: a microscopic study. Environ Toxicol Pharmacol 21:246–253. doi:10.1016/j.etap.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  • Cong VN, Phuong NT, Bayley M (2008) Brain cholinesterase response in the snakehead fish (Channa striata) after field exposure to diazinon. Ecotoxicol Environ Saf 71:314–318. doi:10.1016/j.ecoenv.2008.04.005

    Article  CAS  Google Scholar 

  • de Menezes CC, Loro VL, da Fonseca MB, Cattaneo R, Pretto A, Miron DS, Santi A (2011) Oxidative parameters of Rhamdia quelen in response to commercial herbicide containing clomazone and recovery pattern. Pestic Biochem Physiol 100:145–150. doi:10.1016/j.pestbp.2011.03.002

    Article  Google Scholar 

  • Dubus I, Hollis J, Brown C (2000) Pesticides in rainfall in Europe. Environ Pollut 110:331–344 (PII: S0269-7491(99)00295-X)

    Article  PubMed  CAS  Google Scholar 

  • U.S. EPA (2005) Aquatic life ambient water quality criteria Diazinon Final. Office of Science and Technology Washington, DC. (CAS Registry Number 333-41-5) 1-85

  • Ferreira D, da Motta AC, Kreutz LC, Toni C, Barcellos LJG, Loro VL (2010) Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals. Chemosphere 79:914–921. doi:10.1016/j.chemosphere.2010.03.024

    Article  PubMed  CAS  Google Scholar 

  • Franco JL, Posser T, Mattos JJ, Sánchez-Chardi A, Trevisan R, Oliveira CS, Carvalho PSM, Leal RB, Marques MRF, Bainy ACD, Dafre AL (2008) Biochemical alterations in juvenile carp (Cyprinus carpio) exposed to zinc: glutathione reductase as a target. Mar Environ Res 66:88–89. doi:10.1016/j.marenvres.2008.02.031

    Article  PubMed  CAS  Google Scholar 

  • Fujii Y, Asaka S (1982) Metabolism of diazinon and diazoxon in fish liver preparations. Bull Environ Contam Toxicol 29:455–460

    Article  PubMed  CAS  Google Scholar 

  • Garcia S, Ake C, Clement B, Huebuer H, Donnelly K, Shalat S (2001) Initial results of environmental monitoring in the Texas Rio Grande valley. Environ Int 26:465–474. doi:10.1016/S0160-4120(01)00027-7

    Article  PubMed  CAS  Google Scholar 

  • Ghassempour A, Mohammadkhah A, Najafie M, Rajabzadeh M (2002) Monitoring of the pesticide diazinon in soil, stem and surface water of rice fields. Anal Sci 18(7):779–783. doi:10.2116/analsci.18.779

    Article  PubMed  CAS  Google Scholar 

  • Girón-Pérez MI, Santerre A, Gonzalez-Jaime F, Casas-Solis J, Hernández-Coronado M, Peregrina-Sandoval J, Takemura A, Zaitseva G (2007) Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish Shellfish Immunol 23:760–769

    Article  PubMed  Google Scholar 

  • Hai DQ, Varga SI, Matkovics B (1997) Organophosphate effects of antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comp Biochem Physiol 117:83–88 PMID: 9206589

    CAS  Google Scholar 

  • Hamm JT, Wilson BW, Hinton DE (2001) Increasing uptake and bioactivation with development positively modulate diazinon toxicity in early life stage medaka (Oryzias latipes). Toxicol Sci 61:304–313 PMID: 11353139

    Article  PubMed  CAS  Google Scholar 

  • Iris F, Benzie F, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal Biochem 239:70–76

    Article  Google Scholar 

  • Isik I, Celik I (2008) Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 92:38–42. doi:10.1016/j.pestbp.2008.06.001

    Article  CAS  Google Scholar 

  • Jos A, Pichardo S, Prieto AI, Repetto G, Vazquez CM, Moreno I, Camean AM (2005) Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquat Toxicol 72:261–271. doi:10.1016/j.aquatox.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  • Keizer J, D’Agostino G, Nagel R, Gramenzi F, Vittozzi L (1993) Comparative diazinon toxicity in guppy and zebra fish: different role of oxidative metabolism. Environ Toxicol Chem 12:1243–1250. doi:10.1002/etc.560120713

    Article  CAS  Google Scholar 

  • Keizer J, D’Agostino G, Nagel R, Volpe T, Gnemid P, Vittozzi L (1995) Enzymological differences of AChE and diazinon hepatic metabolism: correlation of in vitro data with the selective toxicity of diazinon to fish species. Sci Total Environ 171:213–220 (SSDI: 0048-9697(95) 04687-V)

    Article  PubMed  CAS  Google Scholar 

  • Khara H, Salar Amoli J, Mazloumi H, Nezami SHA, Zolfinezhad K, Khodaparast SH, Hasan J, Akbarzadeh A, Mohammadi S, Gholipour S, Gholipour Z, Taghizadeh M (2008) Survey and seasonal measurement of pesticide (hinosan, machete and diazinon) in water of Oshmak River (east of Guilan). J Biol Sci 2(4):29–43

    Google Scholar 

  • Khazaei SH (2007) Study of nitrate and diazinon residues in groundwater of Mahmoudabad area and verifying with one dimensional model. M.Sc. thesis, University of Tehran, Natural Resources Faculty, Department Fisheries and Environmental sciences, p 87

  • Khazaei SH, Khorasani N, Talebi KH, Ehteshami M (2010) Investigation of the groundwater contamination due to the use of diazinon insecticide in Mazandaran Province (Case study: Mahmoud Abad City). J Natur Environ (Iranian J Natur Resour) 63(1):23–32

    Google Scholar 

  • Lartiges SB, Garrigues PP (1995) Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters under various environmental conditions. Environ Sci Technol 29(5):1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Li PCH, Swanson EJ, Gobas FAPC (2002) Diazinon and its degradation products in agricultural water courses in British Columbia, Canada. Bull Environ Contam Toxicol 69:59–65. doi:10.1007/S00128-002-0010-0

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Li P, Randak T (2010a) Ecotoxocological effects of short-term exposure to a human pharmaceutical Verapamil in juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C 152:385–391. doi:10.1016/j.cbpc.2010.06.007

    Google Scholar 

  • Li ZH, Zlabek V, Grabic R, Li P, Randak T (2010b) Modulation of glutathione-related antioxidant defense system of fish chronically treated by the fungicide propiconazole. Comp Biochem Physiol C 152:392–398. doi:10.1016/j.cbpc.2010.06.006

    Google Scholar 

  • Li ZH, Zlabek V, Velíšek J, Grabic R, Machová J, Kolařová J, Li P, Randák T (2010c) Hepatic antioxidant status and hematological parameters in rainbow trout, Oncorhynchus mykiss, after chronic exposure to carbamazepine. Chem Biol Interact 183:98–104. doi:10.1016/j.cbi.2009.09.009

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Zlabek V, Velíšek J, Grabic R, Machová J, Kolařová J, Li P, Randák T (2010d) Biochemical and physiological responses in liver and muscle of rainbow trout after long-term exposure to propiconazole. Ecotoxicol Environ Saf 73(2010):1391–1396. doi:10.1016/j.ecoenv.2010.05.017

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Zlabek V, Velíšek J, Grabic R, Machová J, Kolařová J, Li P, Randák T (2010e) Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater 185(2011):870–880. doi:10.1016/j.jhazmat.2010.09.102

    PubMed  Google Scholar 

  • Li ZH, Velisek J, Zlabek V, Grabic R, Machova J, Li P, Randak T (2011a) Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater 185:870–880. doi:10.1016/j.jhazmat.2010.09.102

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Zlabek V, Velíšek J, Grabic R, Machová J, Kolařová J, Li P, Randák T (2011b) Antioxidant responses and plasma biochemical characteristics in the freshwater rainbow trout, Oncorhynchus mykiss, after acute exposure to the fungicide propiconazole. Czech J Anim Sci 56(2):61–69

    CAS  Google Scholar 

  • Luo Y, Su Y, Lin R, Shi H, Wang X (2006) 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method. Chemosphere 65:1064–1073. doi:10.1016/j.chemosphere.2006.02.054

    Article  PubMed  CAS  Google Scholar 

  • Mansour M, Feicht EA, Behechti A, Schramm K, Kettrup A (1999) Determination photo-stability of selected agrochemicals in water and soil. Chemosphere 39:575–585. doi:10.1016/S0045-6535(99)00123-X

    Article  PubMed  CAS  Google Scholar 

  • Matos P, Fontaínhas-Fernandes A, Peixoto F, Carrola J, Rocha E (2007) Biochemical and histological hepatic changes of Nile tilapia Oreochromis niloticus exposed to carbaryl. Pestic Biochem Physiol 89:73–80. doi:10.1016/j.pestbp.2007.03.002

    Article  CAS  Google Scholar 

  • Mishra AK, Mohanty B (2008) Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environ Toxicol Pharmacol 26:136–141. doi:10.1016/j.etap.2008.02.010

    Article  PubMed  CAS  Google Scholar 

  • Mobasher M, Aramesh K, Aldavoud SJ, Ashrafganjooei N, Divsalar K, Phillips CJC, Larijani B (2008) Proposing a national ethical framework for animal research in Iran. Iranian J Publ Health 37(1):39–46

    Google Scholar 

  • Monteiro DA, de Almeid JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C 143:141–149. doi:10.1016/j.cbpc.2006.01.004

    Article  Google Scholar 

  • Oruҫ EÖ, Usta D (2007) Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ Toxicol Pharmacol 23:48–55. doi:10.1016/j.etap.2006.06.005

    Article  Google Scholar 

  • Ozmen I, Bayir A, Cengiz M, Sirkecioglu AN, Atamanalp M (2004) Effects of water reuse system on antioxidant enzymes of rainbow trout (Oncorhynchus mykiss W., 1792). Vet Med Czech 49(10):373–378

    CAS  Google Scholar 

  • Parvez S, Pandey S, Ali M, Raisuddin S (2006) Biomarkers of oxidative stress in Wallago attu (Bl. and Sch.) during and after a fish-kill episode at Panipat, India. Sci Total Environ 368:627–636. doi:10.1016/j.scitotenv.2006.04.011

    Article  PubMed  CAS  Google Scholar 

  • Peña-Llopis S, Ferrando MD, Peña JB (2003) Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine. Aquat Toxicol 65:337–360. doi:10.1016/S0166-445X(03)00148-6

    Article  PubMed  Google Scholar 

  • Rahiminezhhad M, Shahtaheri SJ, Ganjalim R, Rahimi Foroushani A, Golbabaei F (2009) Moleculary imprinted solid phase extraction for trace analysis of diazinon in drinking water. IJEHSE 6:97–106

    Google Scholar 

  • Robbins SL (2007) Liver, biliary tract, and pancreas. In: Cortan RS, Kumar V, Robbins SL (eds) Robbins pathologic basis of disease, 5th edn. Saunders, Philadelphia, pp 941–949

    Google Scholar 

  • Schlenk D (2005) Pesticide biotransformation in fish. In: Mommsen TP, Moon TW (eds) Biochemistry and molecular biology of fishes, vol 6. Elsevier, Amsterdam, pp 171–190

    Google Scholar 

  • Seguchi K, Asaka S (1981) Intake and excretion of diazinon in freshwater fishes. Bull Environ Contam Toxicol 27:244–249. doi:0007-4861/81/0027-0244

    Article  PubMed  CAS  Google Scholar 

  • Sepici-Dinçel A, Cağlan Karasu Benli A, Selvi M, Sarıkaya R, Şahin D, Özkul IA, Erkoç F (2009) Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: biochemical, hematological, histopathological alterations. Ecotoxicol Environ Saf 72:1433–1439. doi:10.1016/j.ecoenv.2009.01.008

    Article  PubMed  Google Scholar 

  • Shayeghi M, Javadian EA (2001) Study of the residue of lindin and diazinon in the rice fields in Tonkabon City (Mazandaran Province) 1999. J Environ Sci Technol 9:51–58

    Google Scholar 

  • Shayeghi M, Darabi H, Abtahi H, Sadeghi M, Pakbaz F, Golestaneh SR (2007) Assessment of persistence and residue of diazinon and malathion in three Rivers (Mond, Shahpour and Dalaky) of Bushehr province in 2004–2005 years. Iranian South Med J 10(1):54–60

    Google Scholar 

  • Shayeghi M, Khoidel M, Bageri F, Abtahi M (2008) Azinphos methyl and diazinon residues in rivers of Qara-Su River and Gorgan-rud River in Golestan Province. J Publ Health Health Res Inst 6(1):75–82

    Google Scholar 

  • Sureda A, Box A, Ensenat M, Alou E, Tauler P, Deudero S, Pons A (2006) Enzymatic antioxidant response of a labrid fish (Coris julis) liver to environmental caulerpenyne. Comp Biochem Physiol C 144:191–196. doi:10.1016/j.cbpc.2006.08.001

    Google Scholar 

  • Sureda A, Box A, Deudero S, Pons A (2009) Reciprocal effects of caulerpenyne and intense herbivorism on the antioxidant response of Bittium reticulatum and Caulerpa taxifolia. Ecotoxicol Environ Saf 72:795–801. doi:10.1016/j.ecoenv.2007.12.007

    Article  PubMed  CAS  Google Scholar 

  • Talebi K (1998) Diazinon residues in the basins of Anzali Lagoon, Iran. Bull Environ Contam Toxicol 61:477–483

    Article  PubMed  CAS  Google Scholar 

  • Tarahi Tabrizi S (2001) Study of pesticide residues (diazinon, malathion, metasytoux) in the Tabriz Nahand River, M.Sc. thesis, Tehran University of Medical Science, Tehran, Iran, pp 1–88

  • Tavakol M (2007) Environmental impact assessment of diazinon in rice fields (a Case Study on Amol Township Rice Fields), M.Sc. thesis, Science and Research Branch, Islamic Azad University, Tehran, Iran, pp 1–95

  • Tejada S, Sureda A, Roca C, Gamundí A, Esteban S (2007) Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bullet 71:372–375. doi:10.1016/j.brainresbull.2006.10.005

    Article  CAS  Google Scholar 

  • Trenzado C, Hidalgo MC, García-Gallego M, Morales AE, Furné M, Domezain A, Domezain J, Sanz A (2006) Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture 254:758–767. doi:10.1016/j.aquaculture.2005.11.020

    Article  CAS  Google Scholar 

  • Üner N, Oruç EÖ, Sevgiler Y, Şahin N, Durmaz H, Usta D (2006) Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environ Toxicol Pharmacol 21:241–245. doi:10.1016/j.etap.2005.08.007

    Article  PubMed  Google Scholar 

  • van Dyk JC, Pieterse GM, van Vuren JHJ (2007) Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf 66:432–440. doi:10.1016/j.ecoenv.2005.10.012

    Article  PubMed  Google Scholar 

  • Vinodhini R, Narayanan M (2009) Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpio L. (Common Carp). Int J Environ Res 3(1):95–100

    CAS  Google Scholar 

  • Wang TC, Hoffman ME (1991) Degradation of organophosphorus pesticides in coastal water. J Assoc Off Anal Chem 74(5):883–886

    Google Scholar 

  • Zaruk D, Comba M, Struger J, Young S (2001) Comparison of immunoassay with a conventional method for the determination of Diazinon in surface waters. Anal Chim Acta 444:163–168 (PII: S0003-2670(01)01158-8)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support offered from the Natural Resource Faculty, Tehran University. The authors are also grateful to Mr. Reza Ashori and Mrs. Maryam Mossavei, laboratory technicians, for their cooperation and assistance throughout the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Banaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banaee, M., Sureda, A., Mirvaghefi, A.R. et al. Biochemical and histological changes in the liver tissue of rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of diazinon. Fish Physiol Biochem 39, 489–501 (2013). https://doi.org/10.1007/s10695-012-9714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9714-1

Keywords

Navigation