Skip to main content
Log in

Dispersant use as a response to oil spills: toxicological effects on fish cardiac performance

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Dispersant use is a controversial technique used to respond to oil spills in nearshore areas. In order to assess the toxicity of this technique, this study evaluated the cardiac toxicological effects on juvenile golden grey mullets Liza aurata exposed for 48 h to either dispersant alone, chemically dispersed oil, mechanically dispersed oil, the water-soluble fraction of oil or a control condition. Following exposure, the positive inotropic effects of adrenaline were assessed in order to evaluate a potential impairment on the cardiac performance. The results revealed an impairment of the positive inotropic effects of adrenaline for all the contaminants (single dispersant, dispersed and undispersed oil, water-soluble fraction of oil). This suggests that: (1) cardiac performance is a valuable parameter to study the physiopathological effects of dispersed oil; (2) dispersant application is likely to impair cardiac performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aas E, Baussant T, Balk L, Liewenborg B, Andersen OK (2000) PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquat Toxicol 51:241–258

    Article  PubMed  CAS  Google Scholar 

  • Camus L, Aas E, Børseth JF (1998) Ethoxyresorufin-O-deethylase activity and fixed wavelength fluorescence detection of PAH metabolites in bile in Turbot (Scophthalmus maximus L.) exposed to a dispersed topped crude oil in a continuous flow system. Mar Environ Res 46:29–32

    Article  CAS  Google Scholar 

  • Churchill PF, Dudley RJ, Churchill SA (1995) Surfactant-enhanced bioremediation. Waste Manag 15:371–377

    Article  CAS  Google Scholar 

  • Claireaux G, Davoodi F (2010) Effect of exposure to petroleum hydrocarbons upon cardio-respiratory function in the common sole (Solea solea). Aquat Toxicol 98:113–119

    Article  PubMed  CAS  Google Scholar 

  • Cormack D (1977) Oil pollution. Chem Ind 14:605–608

    Google Scholar 

  • Goanvec C, Poirier E, Le Floch S, Théron M (2011) Branchial structure and hydromineral equilibrium in juvenile turbot (Scophthalmus maximus) exposed to heavy fuel oil. Fish Physiol Biochem 37:363–371

    Article  PubMed  CAS  Google Scholar 

  • Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196:191–205

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Yim UH, Han GM, Shim WJ (2009) Biochemical changes in rockfish, Sebastes schlegeli, exposed to dispersed crude oil. Comp Biochem Physiol Part C Toxicol Pharmacol 150:218–223

    Article  Google Scholar 

  • Klabunde RE (2011) Cardiovascular physiology concepts, 2nd edn. Lippincott Williams & Wilkins, New York

    Google Scholar 

  • Lewis A, Daling P (2001) Oil spill dispersants. In: Consultant ALOS. SINTEF, Staines

  • Milinkovitch T, Kanan R, Thomas-Guyon H, Le Floch S (2011) Effects of dispersed oil exposure on bioaccumulation of polycyclic aromatic hydrocarbons and mortality of juvenile Liza ramada. Sci Total Environ 409:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Milinkovitch T, Lucas J, Le Floch S, Thomas-Guyon H, Lefrançois C (2012) Effect of dispersed crude oil exposure upon the aerobic metabolic scope in juvenile golden grey mullet (Liza aurata). Mar Pol Bull 64:865–871

    Article  CAS  Google Scholar 

  • Petersen LH, Gamperl K (2009) A comprehensive examination of the effects of chronic hypoxia on the cardiorespiratory physiology of Atlantic cod (Gadus morhua). Comp Biochem Physiol Part A 153:S56–S63

    Google Scholar 

  • Ramachandran SD, Hodson PV, Khan CW, Lee K (2004) Oil dispersant increases PAH uptake by fish exposed to crude oil. Ecotox Environ Saf 59:300–308

    Article  CAS  Google Scholar 

  • Shiels HA, Farrell AP (1997) The effect of the temperature and adrenaline on the relative importance of the sarcoplasmic reticulum in contributing Ca2+ to force development in isolated ventricular trabeculae from rainbow trout. J Exp Biol 200:1607–1621

    PubMed  CAS  Google Scholar 

  • Spooner MF (1970) Oil spill in Tarut Bay, Saudi Arabia. Mar Pol Bull 1:166–167

    Article  Google Scholar 

  • Thiem A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    Google Scholar 

  • Thomaz JM, Martins ND, Monteiro DA, Rantin FT, Kalinin AL (2009) Cardio-respiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON®). Ecotox Environ Saf 72:1413–1424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Milinkovitch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milinkovitch, T., Thomas-Guyon, H., Lefrançois, C. et al. Dispersant use as a response to oil spills: toxicological effects on fish cardiac performance. Fish Physiol Biochem 39, 257–262 (2013). https://doi.org/10.1007/s10695-012-9696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9696-z

Keywords

Navigation