Skip to main content
Log in

The role of leptin in lipid metabolism in fatty degenerated hepatocytes of the grass carp Ctenopharyngodon idellus

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Leptin (Lep) is a key factor in the regulation of energy homeostasis in mammals, but its role in the fatty degenerated hepatocytes of the grass carp Ctenopharyngodon idellus is still unknown. The aim of our study is to determine the underlying mechanism and possible effects of C. idellus Lep function in lipid metabolism in C. idellus fatty degenerated hepatocytes. Fatty degenerated hepatocytes of C. idellus were established through treatment with media containing 0.1 % lipid emulsion (LE). Hepatic triglycerides had markedly accumulated in the treated hepatocytes 48 h later. Furthermore, we demonstrated that Lep dose dependently promoted the release of glycerol, but not FFA, in fatty degenerated hepatocytes. We also found that Lep affected the expression of key genes related to lipid metabolism at the transcriptional and translational levels. A total of ten genes, including HSL, ATGL, PPARα, PPARβ, UCP1, UCP2, PGC-1α, and CPTIα-1b, were markedly upregulated, while SCD1a and PPARγ were downregulated with Lep treatment. Moreover, the protein levels of HSL and ATGL and the LPL activity also significantly increased. The Lep-induced lipolysis was disrupted by the JAK-STAT inhibitor AG490, suggesting that JAK-STAT signaling pathways were involved in the process of Lep-induced lipolysis. Using the IRS-PI(3)K-specific inhibitor W1628, we found that only the Lep-induced downregulation of PPARγ was reduced. This result indicated that the IRS-PI(3)K signaling pathway was involved in the regulation of the adipogenic gene PPARγ. Overall, our results provided evidence that Lep directly stimulated JAK-STAT signaling-mediated lipolysis and fatty acid β-oxidation gene expression in the fatty degenerated hepatocytes of C. idellus and inhibited the adipogenesis mediated by the IRS-PI(3)K signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PPARα:

Peroxisome proliferators-activated receptor-alpha

PPARβ:

Peroxisome proliferators-activated receptor-beta

PPARγ:

Peroxisome proliferators-activated receptor-gamma

HSL:

Hormone-sensitive lipase

ATGL:

Adipose triglyceride lipase

PGC-1α:

Peroxisome proliferators-activated receptor gamma coactivator-1 alpha

CPT-I:

Carnitine palmitoyl transferase-I

UCP1:

Uncoupling protein 1

UCP2:

Uncoupling protein 2

FFA:

Free fatty acids

SCD1:

Stearoyl-CoA desaturase 1

LPL:

Lipoprotein lipase

Lep:

Leptin

LepR:

Leptin receptor

JAK-STAT:

Just another kinase/signal transducer and activator of transcription

IRS-PI(3)K:

Insulin receptor substrate (IRS)-phosphatidylinositol-3-OH-kinase

NAFL:

Nonalcoholic fatty liver

References

  • Aguilar AJ, Conde-Sieira M, Polakof S, Míguez JM, Soengas JL (2010) Central leptin treatment modulates brain glucosensing function and peripheral energy metabolism of rainbow trout. Peptides 31:1044–1054

    Article  CAS  PubMed  Google Scholar 

  • Ahima RS, Osei SY (2004) Leptin signaling. Physiol Behav 81:223–241

    Article  CAS  PubMed  Google Scholar 

  • Ahima RS, Saper CB, Flier JS, Elmquist JK (2000) Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 21:263–307

    Article  CAS  PubMed  Google Scholar 

  • Auwerx J, Leroy P, Schoonjans K (1992) Lipoprotein lipase: recent contributions from molecular biology. Crit Rev Clin Lab Sci 29:243–268

    Article  CAS  PubMed  Google Scholar 

  • Baker DM, Larsen DA, Swanson P, Dickhoff WW (2000) Long-term peripheral treatment of immature coho salmon (Oncorhynchus kisutch) with human leptin has no clear physiologic effect. Gen Comp Endocrinol 118:134–138

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinol 137:354–366

    Article  CAS  Google Scholar 

  • Castro LF, Wilson JM, Goncçalves O, Galante-Oliveira S, Rocha E, Cunha I (2011) The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol 11:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua PK, Liang Wang RY, Lin MH, Masuda T, Suk FM, Shih C (2005) Reduced secretion of virions and hepatitis B virus (HBV) surface antigen of a naturally occurring HBV variant correlates with the accumulation of the small S envelope protein in the endoplasmic reticulum and Golgi apparatus. J Virol 79:13483–13496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA, Sharma R, Hudgins LC, Ntambi JM, Friedman JM (2002) Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297:240–243

    Article  CAS  PubMed  Google Scholar 

  • Crespi EJ, Denver RJ (2006) Leptin (ob gene) of the South African clawed frog Xenopus laevis. Proc Natl Acad Sci USA 103:10092–10097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Pedro N, Martínez-Álvarez R, Delgado MJ (2006) Acute and chronic leptin reduces food intake and bodyweight in goldfish (Carassius auratus). J Endocrinol 188:513–520

    Article  PubMed  Google Scholar 

  • Evans H, De Tomaso T, Quail M, Rogers J, Gracey AY, Cossins AR, Berenbrink M (2008) Ancient and modern duplication events and the evolution of stearoyl-CoA desaturases in teleost fishes. Physiol Genom 35(1):18–29

    Article  CAS  Google Scholar 

  • Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15:269–272

    Article  CAS  PubMed  Google Scholar 

  • Frøiland E, Murashita K, Jørgensen EH, Kurokawa T (2010) Leptin and ghrelin in anadromous Arctic charr: cloning and change in expressions during a seasonal feeding cycle. Gen Comp Endocrinol 165:136–143

    Article  PubMed  Google Scholar 

  • Ghilardi N, Skoda RC (1997) The leptin receptor activates janus kinase 2 and signals for proliferation in a factor dependent cell line. Mol Endocrinol 11:393–399

    Article  CAS  PubMed  Google Scholar 

  • Gimble JM, Nuttall ME (2004) Bone and fat: old questions, new insights. Endocrine 23:183–188

    Article  CAS  PubMed  Google Scholar 

  • Gong GH, Qin Y, Huang W, Zhou S, Wu XH, Yang XH, Zhao YL, Li D (2010) Protective effects of diosgenin in the hyperlipidemic rat model and in human vascular endothelial cells against hydrogen peroxide-induced apoptosis. Chem Biol Interact 184:366–375

    Article  CAS  PubMed  Google Scholar 

  • Gorissen M, Bernier NJ, Nabuurs SB, Flik G, Huising MO (2009) Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution. J Endocrinol 201:329–339

    Article  CAS  PubMed  Google Scholar 

  • Harvey J, Ashford MLJ (2003) Leptin in the CNS: much more than a satiety signal. Neuropharmacology 44:845–854

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Yasui H (2005) Essential role of singlet oxygen species in cytochrome P450-dependent substrate oxygenation by rat liver microsomes. Drug Metab Pharmacokinet 20:14–23

    Article  PubMed  Google Scholar 

  • Houseknecht KL, Portocarrero CP (1998) Leptin and its receptors: regulators of whole-body energy homeostasis. Domest Anim Endocrin 15:457–475

    Article  CAS  Google Scholar 

  • Huising MO, Geven EJ, Kruiswijk CP, Nabuurs SB, Stolte EH, Spanings FA, Verburg-van Kemenade BM, Flik G (2006) Increased leptin expression in common Carp (Cyprinus carpio) after food intake but not after fasting or feeding to satiation. Endocrinology 147:5786–5797

    Article  CAS  PubMed  Google Scholar 

  • Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41:317–318

    Article  CAS  PubMed  Google Scholar 

  • Johnson RM, Johnson TM, Londraville RL (2000) Evidence for leptin expression in fishes. J Exp Zool 286:718–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju DP, He JJ, Zhao LL, Zheng XL, Yang GS (2012) Estrogen related receptor α-induced adipogenesis is PGC-1β-dependent. Mol Biol Rep 39(3):3343–3354

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa T, Murashita K (2009) Genomic characterization of multiple leptin genes and a leptin receptor gene in the Japanese medaka, Oryzias latipes. Gen Comp Endocrinol 161:229–237

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa T, Uji S, Suzuki T (2005) Identification of cDNA coding for a homologue to mammalian leptin from pufferfish, Takifugu rubripes. Peptides 26:745–750

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa T, Murashita K, Suzuki T, Uji S (2008) Genomic characterization and tissue distribution of leptin receptor and leptin receptor overlapping transcript genes in the pufferfish, Takifugu rubripes. Gen Comp Endocrinol 158:108–114

    Article  CAS  PubMed  Google Scholar 

  • Li GG, Liang XF, Xie Q, Li GZ, Yu Y, Lai K (2010a) Gene structure, recombinant expression and functional characterization of grass carp leptin. Gen Comp Endocrinol 166:117–127

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Zheng XL, Liu BT, Yang GS (2010b) Regulation of ATGL expression mediated by leptin in vitro in porcine adipocyte lipolysis. Mol Cell Biochem 333:121–128

    Article  CAS  PubMed  Google Scholar 

  • Liang XF, Ogata HY, Oku H, Chen J, Hwang F (2003) Abundant and constant expression of uncoupling protein 2 in the liver of red sea bream Pagrus major. Comp Biochem Physiol A 136:655–661

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Londraville L, Duvall CS (2002) Murine leptin injections increase intracellular fatty acid-binding protein in green sunfish (Lepomis cyanellus). Gen Comp Endocrinol 129:56–62

    Article  CAS  PubMed  Google Scholar 

  • McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14

    Article  CAS  PubMed  Google Scholar 

  • Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM (2000) The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem 275:30132–30138

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Kim YC, Ntambi JM (2001) A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J Lipid Res 42:1018–1024

    CAS  PubMed  Google Scholar 

  • Morash AJ, Le Moine CMR, McClelland GB (2010) Genome duplication events have led to a diversification in the CPTI gene family in fish. Am J Physiol Regul Integr Comp Physiol 299:R579–R589

    Article  CAS  PubMed  Google Scholar 

  • Morton GJ, Blevins JE, Kim F, Matsen M, Figlewicz DP (2009) The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am J Physiol Endocrinol Metab 297:E202–E210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashita K, Uji S, Yamamoto T, Rønnestad I, Kurokawa T (2008) Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B 150:377–384

    Article  Google Scholar 

  • Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  CAS  PubMed  Google Scholar 

  • Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  CAS  PubMed  Google Scholar 

  • Rahmouni K, Haynes WG (2004) Leptin and the cardiovascular system. Recent Prog Horm Res 59:225–244

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Zacarias J, Castro-Munozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97:493–497

    Article  CAS  PubMed  Google Scholar 

  • Ramsay TG (2001) Porcine leptin alters insulin inhibition of lipolysis in porcine adipocytes in vitro. J Anim Sci 79:653–657

    Article  CAS  PubMed  Google Scholar 

  • Richard L, Londraville Duvall CS (2002) Murine leptin injections increase intracellular fatty acid-binding protein in green sunfish (Lepomis cyanellus). Gen Comp Endocr 129:56–62

    Article  Google Scholar 

  • Rønnestad I, Nilsen TO, Murashita K, Angotzi AR, Moen AGG, Stefansson SO, Kling P, Björnsson BT, Kurokawa T (2010) Leptin and leptin receptor genes in Atlantic salmon: cloning, phylogeny, tissue distribution and expression correlated to long-term feeding status. Gen Comp Endocrinol 168:55–70

    Article  PubMed  Google Scholar 

  • Shimabukuro M, Koyama K, Chen G, Wang MY, Trieu F, Lee Y, Newgard CB, Unger RH (1997) Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA 94:4637–4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, Boss O, Pernin A, Chin WW, Cusin I, Rohner-Jeanrenaud F, Burger AG, Zapf J, Meier CA (1997) Direct effects of leptin on brown and white adipose tissue. J ClinInvest 100:2858–2864

    CAS  Google Scholar 

  • Silverstein JT, Plisetskaya EM (2000) The effects of NPY and insulin on food intake regulation in fish. Am Zool 40:296–308

    CAS  Google Scholar 

  • Stanley S, Wynne K, McGowan B, Bloom S (2005) Hormonal regulation of food intake. Physiol Rev 85:1131–1158

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Lin J, Krauss S, Tarr PT, Yang RJ, Newgard CB, Spiegelman BM (2003) Bioenergetic analysis-1 of peroxisome proliferator-activated receptor gamma coactivators-l alpha and-1 beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 278:26597–26603

    Article  CAS  PubMed  Google Scholar 

  • Tajima D, Masaki T, Hidaka S, Kakuma T, Sakata T, Yoshimatsu H (2005) Acute central infusion of leptin modulates fatty acid mobilization by affecting lipolysis and mRNA expression for uncoupling proteins. Exp Biol Med 230:200–206

    Article  CAS  Google Scholar 

  • Taouis M, Chen JW, Daviaud C, Dupont J, Derouet M, Simon J (1998) Cloning of the chicken leptin gene. Gene 208:239–242

    Article  CAS  PubMed  Google Scholar 

  • Volkoff H, Eykelbosh AJ, Peter RE (2003) Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting. Brain Res 972:90–109

    Article  CAS  PubMed  Google Scholar 

  • Wang MY, Lee Y, Roger UH (1999) Novel form of lipolysis induced by leptin. J Biol Chem 274:17541–17544

    Article  CAS  PubMed  Google Scholar 

  • Wong M, Yu R, Ng P, Law S, Tsang A, Kong R (2007) Characterization of a hypoxia-responsive leptin receptor (omLepRL) cDNA from the marine medaka (Oryzias melastigma). Mari Pollu Bul 54:792–819

    Article  Google Scholar 

  • Wynne K, Stanley S, McGowan B, Bloom S (2005) Appetite control. J Endocrinol 184:291–318

    Article  CAS  PubMed  Google Scholar 

  • Yacobovitz M, Solomon G, Gusakovsky EE, Levavi-Sivan B, Gertler A (2008) Purification and characterization of recombinant pufferfish (Takifugu rubripes) leptin. Gen Comp Endocrinol 156:83–90

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Della-Fera MA, Hartzell DL, Hausman D, Baile CA (2008) Adipose tissue gene expression profiles in ob/ob mice treated with leptin. Life Sci 83:35–42

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yang X (2007) Comparison of two methods for establishment of hepatocytic steatosis in vitro. J Pract Med (in Chinese) 23:2623–2624

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Jeffrey T. Silverstein, Dr. Hong Ji, and Dr. Guoliang Meng for their helpful review of the manuscript. This work was financially supported by the National Natural Science Foundation of China (31172420 and 31072219), the National Basic Research Program of China (2009CB118702), the Special Fund for Agro-Scientific Research in the Public Interest of China (201003020) and the Fundamental Research Funds for the Central Universities (2010PY010 and 2011PY030) and the China Postdoctoral Science Foundation (Project No. 52201-12971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Fang Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, RH., Liang, XF., Wang, M. et al. The role of leptin in lipid metabolism in fatty degenerated hepatocytes of the grass carp Ctenopharyngodon idellus . Fish Physiol Biochem 38, 1759–1774 (2012). https://doi.org/10.1007/s10695-012-9673-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9673-6

Keywords

Navigation