Skip to main content
Log in

Embryonic stem cells isolated from Atlantic cod (Gadus morhua) and the developmental expression of a stage-specific transcription factor ac-Pou2

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The establishment of embryonic stem cell cultures and the identification of molecular markers for undifferentiated embryonic stem cells (ESC) as well as differentiated cells types will open new opportunities in the study of developmental biology and for developing embryonic in vitro models of the ecologically and economically important fish specie Atlantic cod (Gadus morhua). We report here that cod blastula cells express a Class V POU gene known to be highly expressed in embryonic cell populations of vertebrates. The cod transcript, designated Atlantic cod-Pou2 (ac-Pou2), can be used as a genetic marker for cod blastula cells in vivo and in vitro. Using a quantitative real-time PCR approach, we found that the ac-Pou2 transcript was downregulated before the egg reached the stage of gastrulation, the starting point of extensive cell differentiation. We also demonstrate the culturing of ESC isolated from cod blastula stage eggs. The cod ESC exhibited in vitro characteristics of pluripotency described for both mammalian ESC and fish ES-like cells (medaka, zebrafish, seabream, sea perch and rainbow trout). Cod ESC in culture expressed ac-pou2, differentiated spontaneously and had the ability to form embryoid bodies following retinoic acid treatment. The ESC could also be directed to differentiate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizawa K, Shimada A, Naruse K, Mitani H, Shima A (2003) The medaka midblastula transition as revealed by the expression of the paternal genome. Gene Expr Patterns 3:43–47

    Article  CAS  PubMed  Google Scholar 

  • Bachvarova RF, Masi T, Drum M, Parker N, Mason K, Patient R, Johnson AD (2004) Gene expression in the axolotl germ line, Axdazl, Axvh, Axoct-4 and axkit. Dev Dyn 231:871–880

    Article  CAS  PubMed  Google Scholar 

  • Bejar J, Hong Y (2002) An ES-like cell line from the marine fish Sparus aurata: characterization and chimera production. Transgenic Res 11:279–289

    Article  CAS  PubMed  Google Scholar 

  • Bejar J, Hong Y, Alvarez MC (1999) Towards obtaining ES cells in the marine fish species Sparus aurata; multipassage maintenance, characterization and transfection. Genet Anal Biomol Eng 15:125–129

    Article  CAS  Google Scholar 

  • Belov K, Deakin JE, Papenfuss AYT, Baker ML, Melman SD et al (2006) Reconstructing an ancestral mammalian immune supercomplex from marsupial major histocompatibility complex. PLoS Biol 4(3):e46

    Article  PubMed  Google Scholar 

  • Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  CAS  PubMed  Google Scholar 

  • Chen SL, Sha ZX, Ye HQ (2003a) Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryos. Aquaculture 218:141–151

    Article  CAS  Google Scholar 

  • Chen SL, Ye HQ, Sha ZX, Hong Y (2003b) Derivation of a pluripotent embryonic cell line from red sea bream blastulas. J Fish Biol 63:795–805

    Article  Google Scholar 

  • Chen SL, Sha ZX, Ye HQ, Liu Y, Tian YS, Hong Y, Tang QS (2007) Pluripotency and chimera competence of an embryonic stem cell line from sea perch (Lateolabrax japonicus). Mar Biotechnol 9:82–91

    Article  CAS  PubMed  Google Scholar 

  • Collidi P, Kamei Y, Sharps A, Weber D, Barnes D (1992) Fish embryo cell cultures for derivation of stem cells and transgenic chimeras. Mol Mar Biol Biotechnol 1:257–265

    Google Scholar 

  • Evans MJ, Kaufmann M (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Gardner RL, Beddington RS (1988) Multi-lineage ‘stem’ cells in the mammalian embryo. J Cell Sci Suppl 10:11–27

    CAS  PubMed  Google Scholar 

  • Hall TE, Smith P, Johnston IA (2004) Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol 259:255–270

    Article  PubMed  Google Scholar 

  • Hauptman G, Gerster T (1995) Pou-2—a zebra fish gene active during cleavage stages and in the early hindbrain. Mech Dev 51:127–138

    Article  Google Scholar 

  • Hinkley CS, Martin JF, Leibham D, Perry M (1992) Sequential expression of multiple POU proteins during amphibian early development. Mol Cell Biol 12:638–649

    CAS  PubMed  Google Scholar 

  • Holen E, Hamre K (2004) Towards obtaining long term embryonic stem cell like cultures from a marine flatfish, Scophtalmus maximus. Fish Physiol Biochem 29:245–252

    Article  Google Scholar 

  • Hong Y, Schartl M (1996) Establishment and growth responses of early medakafish (Oryzias latipes) embryonic cells in feeder layer free cultures. Mol Mar Biol Biotechnol 5:93–104

    CAS  Google Scholar 

  • Johnston BV, Shindo N, Rathjern PD, Rathjern J, Keough RA (2008) Understanding pluripotency-how embryonic stem cells keep their options open. Mol Human Reprod 14:513–520

    Article  Google Scholar 

  • Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119:447–456

    CAS  PubMed  Google Scholar 

  • Kleinsmith LJ, Pierce GB (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1549

    CAS  PubMed  Google Scholar 

  • Lavial F, Acloque H, Bertocchini F, MacLeod DJ, Boast S, Bachelard E, Montillet G, Thenot S, Sang HM, Stren CD, Samarut J, Pain B (2007) The OCT4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 134:3549–3563

    Article  CAS  PubMed  Google Scholar 

  • Martin GR (1981) Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  PubMed  Google Scholar 

  • Morrison GM, Brickman JM (2006) Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. Development 133:2011–2922

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30:687–696

    Article  CAS  PubMed  Google Scholar 

  • Niwa H (2007) How is pluripotency determined and maintained? Development 134:635–646. doi:10.1242/dev.02787

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Sekita Y, Tsend-Ayush E, Grutzner F (2008) Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals. Evol Dev 10:671–682

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Okazawa H, Okuda A, Sakai M, Muramutsu M, Hamada H (1990) A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60:461–472

    Article  CAS  PubMed  Google Scholar 

  • Parameswaran V, Shukla R, Bhonde R, Sahul Hameed AS (2007) Development of a pluripotent ES-like cell line from Asian Sea bass (Lates calcarifer)—an oviparous stem cell line mimicking viviparous ES cells. Mar Biotechnol 0:1–10. doi:10.1007/s10126-007-9028-y

    Google Scholar 

  • Pesce M, Schøler HR (2001) Oct-4: gatekeeper in the beginning of mammalian development. Stem Cells 19:271–278

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Li TG, Hao J, Hu J, Wang J, Simmons H, Miura S, Mishina Y, Zhao GQ (2004) BMP4 supports self renewal of embryonic stem cells by inhibiting mitogen activated protein kinase pathways. Proc Natl Acad Sci USA 101:6027–6032

    Article  CAS  PubMed  Google Scholar 

  • Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PWJ, Staudt LM (1990) A POU domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345:686–692

    Article  CAS  PubMed  Google Scholar 

  • Ryan AK, Rosenfeld MG (1997) POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 11:1207–1225

    Article  CAS  PubMed  Google Scholar 

  • Schøler HR, Hatzopoulos AK, Balling R, Suzuki N, Gruss P (1989) A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an oct factor. EMBO J 8:2543–2550

    PubMed  Google Scholar 

  • Sun L, Bradford CS, Ghosh C, Collidi P, Barnes DW (1995) ES-like cell cultures derived from early zebrafish embryos. Mol Mar Biol Biotechnol 4:193–199

    CAS  PubMed  Google Scholar 

  • Takeda H, Matsuzaki T, Oki T, Miyagawa T, Amanuma H (1994) A novel POU domain gene, zebrafish pou2: expression and roles of two alternatively spliced twin products in early development. Genes Dev 8:45–59

    Article  CAS  PubMed  Google Scholar 

  • Thermes V, Candal E, Alunni A, Serin G, Bourrat F, Joly J-S (2006) Medaka simplet (FAM53B) belongs to a family of novel vertebrate genes controlling cell proliferation. Development 133:1881–1890

    Article  CAS  PubMed  Google Scholar 

  • Veenstra GJC, van der Vliet PC, Destree OHJ (1997) POU domain transcription factors in embryonic development. Mol Biol Rep 24:139–155

    Article  CAS  PubMed  Google Scholar 

  • Wakamutsu Y, Ozato K (1994) Establishment of a pluripotent cell line derived from a medaka (Oryzias latipes) blastula embryo. Mol Mar Biol Biotechnol 3:185–191

    Google Scholar 

  • Whitfield T, Heasman J, Wylie C (1993) XLPOU-60, a Xenopus POU-domain mRNA, is oocyte specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula. Dev Biol 155:361–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The cooperation with Marine Harvest Cod and Sagafjord Seafarm is highly appreciated. The always helpful Julie Skadal at the hatching facility, Ilab, Bergen and the technical assistance of Synnøve Winterthun, Natalia Larsen and Hui-Shan Tung, NIFES, are highly valued. Special thanks to Pål A. Olsvik, NIFES, for the use of cod-specific HSP90β and HSC70 primers. Research on freshly prepared fish ESC and yolk sac larvae is allowed according to The National Animal Research Authority in Norway. This paper was financed by NIFES and Norwegian Research Council (project number: 173534/I30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Holen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holen, E., Kausland, A. & Skjærven, K. Embryonic stem cells isolated from Atlantic cod (Gadus morhua) and the developmental expression of a stage-specific transcription factor ac-Pou2 . Fish Physiol Biochem 36, 1029–1039 (2010). https://doi.org/10.1007/s10695-010-9381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-010-9381-z

Keywords

Navigation