Skip to main content
Log in

Relative potencies of natural estrogens on vitellogenin and choriogenin levels in the Indian freshwater spotted snakehead, Channa punctata: in vivo and in vitro studies

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The relative efficacies of three natural estrogens viz., estrone (E1), estradiol-17β (E2) and estriol (E3) to induce synthesis of vitellogenin (Vg) and choriogenin (Chg) were assessed in primary hepatocyte cultures of the Indian freshwater spotted snakehead, Channa punctata. Hepatocytes were isolated from the spotted snakehead liver by a non-enzymatic protocol. Optimum culture conditions were standardized for ensuring their viability and functioning. Isolated hepatocytes were cultured for 48 h for monolayer formation and then exposed to various concentrations (0.001–10 μM) of the three estrogens. Competitive homologous ELISAs, developed and validated for spotted snakehead Vg and Chg were employed to determine the amounts of these two proteins secreted into the culture medium after 48 h of incubation. The results reveal that although all the three estrogens were effective in inducing the production of Vg and Chg in a dose-dependent manner, there were differences in their relative potencies. Of three estrogens, E1 was the least potent and could induce synthesis of Vg and Chg only at a minimum concentration of 0.5 μM; whereas significant levels of both the proteins were quantified in culture medium by exposing the hepatocytes to E2 or E3 even at a concentration of 0.001 μM. All three estrogens were effective in inducing synthesis of Vg and Chg in vivo also. These results suggest the possibility of employing the above in vitro experimental design to monitor the presence of estrogens/estrogen-like chemicals in natural waters, which could interfere with the estrogen receptor system of fish. This study further points to the possibility of using Chg, in addition to Vg, as a parameter for screening various chemicals for their estrogenic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arukwe A (2008) Fish estrogenic pathways: chemical disruption and related biomarkers. In: Rocha MJ, Arukwe A, Kapoor BG (eds) Fish reproduction. Science Publishers, New Hampshire, pp 471–514

    Google Scholar 

  • Babin PJ, Carnevali O, Lubzens E, Schneider WJ (2007) Molecular aspects of oocyte vitellogenesis in fish. In: Babin PJ, Cerdà J, Lubzens E (eds) The fish oocyte: from basic studies to biotechnological applications. Springer, Netherlands, pp 39–76

    Chapter  Google Scholar 

  • Berg AH, Westerlund L, Olsson PE (2004) Regulation of Arctic char (Salvelinus alpinus) egg-shell proteins and vitellogenin during reproduction and in response to 17β-estradiol and cortisol. Gen Comp Endocrinol 135:276–285. doi:10.1016/j.ygcen.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  • Ferraz N, Carnevia D, Nande G, Rossotti M, Miguez MN, Last JA, Gonzalez-Sapienza G (2007) Specific immunoassays for endocrine disruptor monitoring using recombinant antigens cloned by degenerated primer PCR. Anal Bioanal Chem 389:2195–2202. doi:10.1007/s00216-007-1630-3

    Article  CAS  PubMed  Google Scholar 

  • Fossi MC, Massi A, Leonzio C (1994) Blood esterase inhibition in birds as an index of organophosphorus contamination: field and laboratory studies. Ecotoxicology 3:11–20. doi:10.1007/BF00121385

    Article  CAS  PubMed  Google Scholar 

  • Jobling S, Tyler CR (2003) Endocrine disruption in wild freshwater fish. Pure Appl Chem 75:2219–2234. doi:10.1351/pac200375112219

    Article  CAS  Google Scholar 

  • Kim HS, Han SY, Lee BM, Yoo SD, Park KL (2001) Potential estrogenic effects of bisphenol-A in both in vitro and in vivo combination assays. J Toxicol Sci 26:111–118. doi:10.2131/jts.26.111

    Article  CAS  PubMed  Google Scholar 

  • Matthews J, Celius T, Halgren R, Zacharewski T (2000) Differential estrogen receptor binding of estrogenic substances: a species comparison. J Steroid Biochem Mol Biol 74:223–234. doi:10.1016/S0960-0760(00)00126-6

    Article  CAS  PubMed  Google Scholar 

  • Mommsen TP, Korsgaard B (2008) Vitellogenesis. In: Rocha MJ, Arukwe A, Kapoor BG (eds) Fish reproduction. Science Publishers, New Hampshire, pp 113–170

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  • Navas JM, Segner H (2006) Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances. Aquat Toxicol 80:1–2. doi:10.1016/j.aquatox.2006.07.013

    Article  CAS  PubMed  Google Scholar 

  • Neto-Filipak F, Zanata SM, Randi MAF, Pelletier É, Oliveira Ribeiro CA (2006) Hepatocytes primary culture from the neotropical fish trahira Hoplias malabaricus (Bloch). J Fish Biol 69:1524–1532. doi:10.1111/j.1095-8649.2006.01217.x

    Article  Google Scholar 

  • Om Prakash, Goswami SV, Sehgal N (2007) Establishment of ELISA for murrel vitellogenin and choriogenin, as biomarkers of potential endocrine disruption. Comp Biochem Physiol C 146(4):540–551. doi:10.1016/j.cbpb.2006.12.006

    Article  Google Scholar 

  • Panter GH, Thompson RS, Sumpter JP (1998) Adverse reproductive effect in male fathead minnows (Pimephales promelas) exposed to environmentally relevant concentrations of the natural oestrogens, oestradiol and estrone. Aquat Toxicol 42:243–253. doi:10.1016/S0166-445X(98)00038-1

    Article  CAS  Google Scholar 

  • Pesonen M, Andersson T (1997) Fish primary hepatocyte culture; an important model for xenobiotic metabolism and toxicity studies. Aquat Toxicol 37:253–267. doi:10.1016/S0166-445X(96)00811-9

    Article  CAS  Google Scholar 

  • Petrovic M, Eljarrat E, Lopez de Alda M, Barcelo D (2002) Recent advances in the mass spectrometric analysis related to endocrine disrupting compounds in aquatic environmental samples. J Chromatogr A 974:23–51. doi:10.1016/S0021-9673(02)00907-X

    Article  CAS  PubMed  Google Scholar 

  • Petrovic M, Eljarrat E, Lopez de Alda MJ, Barcelo D (2004) Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data. Anal Bioanal Chem 378:549–562. doi:10.1007/s00216-003-2184-7

    Article  CAS  PubMed  Google Scholar 

  • Rankouhi TR, van Holsteijn I, Letcher R, Giesy JP, Van den Berg M (2002) Effects of primary exposure to environmental and natural estrogens on vitellogenin production in carp (Cyprinus carpio) hepatocytes. Toxicol Sci 67:75–80. doi:10.1093/toxsci/67.1.75

    Article  CAS  PubMed  Google Scholar 

  • Rankouhi TR, Sanderson JT, van Holsteijn I, van Leeuwen C, Vethaak AD, Van den Berg M (2004) Effects of natural and synthetic estrogens and various environmental contaminants on vitellogenesis in fish primary hepatocytes: comparison of bream (Abramis brama) and carp (Cyprinus carpio). Toxicol Sci 81:90–102. doi:10.1093/toxsci/kfh176

    Article  CAS  PubMed  Google Scholar 

  • Rao PS, Durve VS (1989) Fish and fisheries of lake Jaisamand, Rajasthan. Indian J Fish 36:47–52

    Google Scholar 

  • Rotchell JM, Ostrander GK (2003) Molecular markers of endocrine disruption in aquatic organisms. J Toxicol Environ Health B 6:453–495. doi:10.1080/10937400306476

    Article  CAS  Google Scholar 

  • Saito K, Tomigahara Y, Ohe N, Isobe N, Nakatsuka I, Kaneto H (2000) Lack of significant estrogenic or anti-estrogenic activity of pyrethroid insecticides in three in vitro assays based on classic estrogen receptor alpha-mediated mechanisms. Toxicol Sci 57:54–60. doi:10.1093/toxsci/57.1.54

    Article  CAS  PubMed  Google Scholar 

  • Seddon WL, Prosser CL (1999) Non-enzymatic isolation and culture of channel catfish hepatocytes. Comp Biochem Physiol A 123:9–15

    Article  CAS  Google Scholar 

  • Sehgal N, Goswami SV (1994) Steroidal effects on plasma vitellogenin levels in intact and hypophysectomized Indian freshwater murrel, Channa punctatus (Bloch). Indian J Exp Biol 32:387–392

    CAS  Google Scholar 

  • Shappell NW, Billey LO, Forbes D, Poach ME, Matheny TA, Reddy GB, Hunt PG (2007) Estrogenic activity and steroid hormones in swine wastewater processed through a lagoon constructed-wetland system. Environ Sci Technol 41(2):444–450. doi:10.1021/es061268e

    Article  CAS  PubMed  Google Scholar 

  • Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103:113–122. doi:10.2307/3432519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumida K, Ooe N, Nagahori H, Saito K, Isobe N, Kaneko H, Nakatsuka I (2001) An in vitro reporter gene assay method incorporating metabolic activation with human and rat S9 or liver microsomes. Biochem Biophys Res Commun 280:85–91. doi:10.1006/bbrc.2000.4071

    Article  CAS  PubMed  Google Scholar 

  • Talwar PK, Jhingran AG (1992) Inland fisheries of India and adjacent countries, vol 2. Balkema Publishers, Rotterdam, pp 543–1158

    Google Scholar 

  • Terkatin-Shimony A, Yaron Z (1978) Estrogens and estrogenic effects in Tilapia aurea (Cichlidae, Teleostei). Ann Biol Anim Biochim Biophys 18:1007–1012. doi:10.1051/rnd:19780539

    Article  CAS  Google Scholar 

  • Thorpe KL, Cummings RI, Hutchinson TH, Scholze M, Brighty G, Sumpter JP (2003) Relative potencies and combination effects of steroidal estrogens in fish. Environ Sci Technol 37(6):1142–1149. doi:10.1021/es0201348

    Article  CAS  PubMed  Google Scholar 

  • Tollefsen KE, Mathisen R, Stenersen J (2003) Induction of vitellogenin synthesis in an Atlantic salmon (Salmo salar) hepatocyte culture: a sensitive in vitro bioassay for the oestrogenic and anti-oestrogenic activity of chemicals. Biomarkers 8:394–407. doi:10.1080/13547500310001607827

    Article  CAS  PubMed  Google Scholar 

  • Van den Belt K, Verheyen R, Witters H (2003) Comparison of vitellogenin responses in zebra fish and rainbow trout following exposure to environmental estrogens. Ecotoxicol Environ Saf 56(2):271–281. doi:10.1016/S0147-6513(03)00004-6

    Article  PubMed  Google Scholar 

  • Yu JYL, Dickhoff WW, Gorbman A, Swanson P (1981) Vitellogenesis and its hormonal regulation in the Pacific hagfish, Eptatretus stouti L. Gen Comp Endocrinol 43:492–502. doi:10.1016/0016-6480(81)90234-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Research Grant SR/SO/AS-02-/2006 from the Department of Science and Technology (DST), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sehgal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, K.V., Sehgal, N., Goswami, S.V. et al. Relative potencies of natural estrogens on vitellogenin and choriogenin levels in the Indian freshwater spotted snakehead, Channa punctata: in vivo and in vitro studies. Fish Physiol Biochem 36, 587–595 (2010). https://doi.org/10.1007/s10695-009-9332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-009-9332-8

Keywords

Navigation