Skip to main content
Log in

Cloning, characterization and expression analysis of a CXCR1-like gene from mandarin fish Siniperca chuatsi

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In this study we cloned and characterized a CXCR1-like gene (mfCXCR1) from mandarin fish (Siniperca chuatsi). The full-length cDNA of mfCXCR1 is 2,173 bp and contains a 1,056 bp open reading frame (ORF) that encodes a protein of 351 amino acids. The 5′ and 3′ untranslated regions (UTR) are 57 and 1,080 bp in length, respectively. The coding region of the mfCXCR1 gene consists of a single exon with a 734 bp intron that is two nucleotides upstream of the ATG start codon in the 5′ UTR. The mfCXCR1 protein shares a relatively high identity with the CXCR1 and CXCR2 proteins of other fishes (~50–65%). Furthermore, phylogenetic analysis indicates a close relatedness of mfCXCR1 to CXCR1 of other fishes. Many binding sites for stress-inducible transcription factors were present in the promoter region of the mfCXCR1 gene, indicating that it might be activated by certain stressors. The level of mfCXCR1 mRNA, when normalized to that in liver (1-fold), was highest in spleen (~192.9-fold), with intermediate levels in kidney (~163.2-fold), blood (~131.2-fold) and head kidney (~109.4-fold), and relatively low levels in intestine (~34.4-fold) and gill (~16.4-fold) (P < 0.05). Expression of mfCXCR1 during the clinical stage of infectious spleen and kidney necrosis virus (ISKNV) infection showed that its expression was regulated over the course of infection. On day 4 after ISKNV challenge, mfCXCR1 expression was down-regulated in blood (~0.91-fold), spleen (~0.26-fold), head kidney (~0.18-fold) and kidney (~0.82-fold).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahuja SK, Shetty A, Tiffany HL, Murphy PM (1994) Comparison of the genomic organization and promoter function for human interleukin-8 receptor A and B. J Biol Chem 269:26381–26389

    PubMed  CAS  Google Scholar 

  • Alabyev BY, Najakshin AM, Mechetina LV, Taranin AV (2000) Cloning of a CXCR4 homolog in chondrostean fish and characterization of the CXCR4-specific structural features. Dev Comp Immunol 24:765–770. doi:10.1016/S0145-305X(00)00035-5

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Baldwin JM (1994) Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 6:180–190. doi:10.1016/0955-0674(94)90134-1

    Article  PubMed  CAS  Google Scholar 

  • Blanpain C, Lee B, Vakili J, Doranz BJ, Govaerts C, Migeotte I, Sharron M, Dupriez V, Vassart G, Doms RW, Parmentier M (1999) Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity. J Biol Chem 274:18902–18908. doi:10.1074/jbc.274.27.18902

    Article  PubMed  CAS  Google Scholar 

  • Burger M, Burger JA, Hoch RC, Oades Z, Takamori H, Schraufstatter IU (1999) Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Koposi’s sarcoma herpesvirus-G protein-coupled receptor. J Immunol 163:2017–2022

    PubMed  CAS  Google Scholar 

  • Chang MX, Sun BJ, Nie P (2007) The first non-mammalian CXCR3 in a teleost fish: gene and expression in blood cells and central nervous system in the grass carp (Ctenopharyngodon idella). Mol Immunol 44:1123–1134. doi:10.1016/j.molimm.2006.07.280

    Article  PubMed  CAS  Google Scholar 

  • Chen LQ, He CB, Baoprasertkul P, Xu P, Li P, Serapion J, Waldbieser G, Wolters W, Liu ZJ (2005) Analysis of a catfish gene resembling interleukin-8: cDNA cloning, gene structure, and expression after infection with Edwardsiella ictaluri. Dev Comp Immunol 29:135–142. doi:10.1016/j.dci.2004.06.011

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio D, Panina-Bordignon P, Sinigaglia F (2003) Chemokine receptors in inflammation: an overview. J Immunol Methods 273:3–13

    Article  PubMed  Google Scholar 

  • Deng M, He JG, Zuo T, Weng SP, Zeng K, Lu L (2000) Infectious spleen and kidney necrosis virus (ISKNV) from Siniperca chuatsi: development of a PCR detection method and the new evidence of iridovirus (in Chinese, with English abstract). Virol Sin 4:365–369

    Google Scholar 

  • Dunstan CAN, Salafranca MN, Adhikari S, Xia YY, Feng LL, Harrison JK (1996) Identification of two rat genes orthologous to the human interleukin-8 receptors. J Biol Chem 271:32770–32776

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Patera AC, Pong-Kennedy A, Deno G, Gonsiorek W, Manfra DJ, Vassileva G, Zeng M, Jackson C, Sullivan L, Sharif-Rodriguez W, Opdenakker G, Damme JV, Hedrick JA, Lundell D, Lira SA, Hipkin RW (2007) Murine CXCR1 is a functional receptor for GCP-2/CXCL6 and interleukin-8/CXCL8. J Biol Chem 282:11658–11666

    Article  PubMed  CAS  Google Scholar 

  • Feiger-Baris R, Yron I, Meshel T, Matityahu E, Ben-Baruch A (2003) IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry 42:2874–2886

    Article  Google Scholar 

  • Gayle RBIII, Sleath PR, Srinivason S, Birks CW, Weerawarna KS, Cerretti DP, Kozlosky CJ, Nelson N, Vandenbos T, Beckmann MP (1993) Importance of the amino acid terminus of the interleukin-8 receptor in ligand interactions. J Biol Chem 268:7283–7289

    PubMed  CAS  Google Scholar 

  • He JG, Zeng K, Weng SP, Chan SM (2002) Experimental transmission, pathogenicity and physical-chemical properties of infectious spleen and kidney necrosis virus (ISKNV). Aquaculture 204:11–24

    Article  CAS  Google Scholar 

  • He W, Yin ZX, Li Y, Huo WL, Guan HJ, Weng SP, Chan SM, He JG (2006) Differential gene expression profile in spleen of mandarin fish Siniperca chuatsi infected with ISKNV, derived from suppression subtractive hybridization. Dis Aquat Org 73:113–122

    Article  PubMed  CAS  Google Scholar 

  • Hedin KE, Duerson K, Clapham DE (1993) Specificity of receptor-G protein interactions: searching for the structure behind the signal. Cell Signal 5:505–518

    Article  PubMed  CAS  Google Scholar 

  • Kayisli UA, Mahutte NG, Arici A (2003) Uterine chemokines in reproductive physiology and pathology. Am J Reprod Immunol 47:213–221

    Article  Google Scholar 

  • Khandaker MH, Xu LL, Rahimpour R, Mitchell G, Singhal SK, Feldman RD, Kelvin DJ (1998) CXCR1 and CXCR2 are rapidly down-regulated by bacterial endotoxin though a unique agonist-independent, tyrosine kinase-dependent mechanism. J Immunol 161:1930–1938

    PubMed  CAS  Google Scholar 

  • Li QJ, Lu S, Ye RD, Martins-Green M (2000) Isolation and characterization of a new chemokine receptor gene, the putative chicken CXCR1. Gene 257:307–317

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Saint DA (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302:52–59

    Article  PubMed  CAS  Google Scholar 

  • Moepps B, Nuesseler E, Braun M, Gierschik P (2006) A homologue of human chemokine receptor CXCR1 is expressed in mouse. Mol Immunol 43:897–914

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Finn A (2000) Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:3032–3043

    PubMed  CAS  Google Scholar 

  • Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12:593–633

    Article  PubMed  CAS  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    PubMed  CAS  Google Scholar 

  • Nakamura H, Yoshimura K, Jaffe HA, Crystal RG (1991) Interleukin-8 gene expression in human bronchial epithelial cells. J Biol Chem 266:19611–19617

    PubMed  CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Paolo L (2000) Chemokines and viruses: the dearest enemies. Virology 273:228–240

    Article  Google Scholar 

  • Purcell MK, Kurath G, Garver KA, Herwig RP, Winton JR (2004) Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunol 17:447–462

    Article  PubMed  CAS  Google Scholar 

  • Saha NR, Bei JX, Suetake H, Araki K, Kai W, Kikuchi K, Lin HR, Suzuki Y (2007) Description of a fugu CXC chemokine and two CXC receptor genes, and characterization of the different stimulations on their expression. Fish Shellfish Immunol 23:1324–1332

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Corden J, Kedinger C, Chambon P (1981) Promotion of specific in vitro transcription by excised “TATA” box sequences inserted in a foreign nucleotide environment. Nucleic Acids Res 9:3941–3958

    Article  PubMed  CAS  Google Scholar 

  • Schall TJ, Bacon KB (1994) Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 6:865–873

    Article  PubMed  CAS  Google Scholar 

  • Schwartz TW (1994) Locating ligand-binding sites in 7TM receptors by protein engineering. Curr Opin Biotechnol 5:434–444

    Article  PubMed  CAS  Google Scholar 

  • Sigh J, Lindenstrom T, Buchamann K (2004) Expression of pro-inflammatory cytokines in rainbow trout (Oncorhynchus mykiss) during an infection with Ichthyophthirius multifiliis. Fish Shellfish Immunol 17:75–86

    Article  PubMed  CAS  Google Scholar 

  • Sprenger H, Lloyd AR, Lautens LL, Bonner TI, Kelvin DJ (1994) Structure, genomic organization and expression of human interleukin-8 receptor B gene. J Biol Chem 269:11065–11072

    PubMed  CAS  Google Scholar 

  • Strader CD, Fong TM, Tota MR, Underwood D, Dixon RAF (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63:101–132

    Article  PubMed  CAS  Google Scholar 

  • Sun BJ, Nie P (2004) Molecular cloning of the viperin gene and its promoter region from the mandarin fish Siniperca chuatsi. Vet Immunol Immunopathol 101:161–170

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Jeevan A, Sawant K, McMurray DN, Yoshimura T (2007) Cloning and characterization of guinea pig CXCR1. Mol Immunol 4:878–888

    Article  Google Scholar 

  • Taniguchi T, Takaoka A (2002) The interferon-alpha/beta system in antiviral response: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14:111–116

    Article  PubMed  CAS  Google Scholar 

  • Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2:129–134

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wess J (1997) G protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J 11:346–354

    PubMed  CAS  Google Scholar 

  • Wu LJ, Ruffing N, Shi XJ, Newman W, Soler D, Mackay CR, Qin SX (1996) Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem 271:31202–31209

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Zhou ZC, Chen C, Huo WL, Yin ZY, Weng SP (2007) Tumor necrosis factor-alpha gene from mandarin fish, Siniperca chuatsi: molecular cloning, cytotoxicity analysis and expression profile. Mol Immunol 44:3615–3622

    Article  PubMed  CAS  Google Scholar 

  • Zeng K, He JG, Weng SP, Huang ZJ, Hou KT, Luo JR (1999) Transmission, host range, temperature sensibility of infectious spleen and kidney necrosis virus (ISKNV) from Siniperca chuatsi (in Chinese, with English abstract). Virol Sin 14:353–357

    Google Scholar 

  • Zhang H, Thorgaard GH, Ristow SS (2002) Molecular cloning and genomic structure of an interleukin-8 receptor-like gene from homozygous clones of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 13:251–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chinese National ‘863’ Project (grant no. 2003AA603011), National Natural Science Foundation of China (grant nos. 30300266, 30325035) and funds from the Science and Technology Bureau of Guangdong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Li, Z., Zhou, Z. et al. Cloning, characterization and expression analysis of a CXCR1-like gene from mandarin fish Siniperca chuatsi . Fish Physiol Biochem 35, 489–499 (2009). https://doi.org/10.1007/s10695-008-9283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9283-5

Keywords

Navigation