Skip to main content
Log in

Effects of dietary thiamin on the physiological status of the grouper Epinephelus coioides

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the effects of dietary thiamin on the physiological status of the juvenile grouper, Epinephelus coioides. Graded levels of thiamin (0.08, 0.50, 2.12, 3.15, 4.63, 12.37 mg thiamin kg−1 diet) were fed to grouper juveniles (mean weight: 16.97 ± 0.14 g) for 10 weeks. Although fish fed the thiamin-deficient (TD) diet showed no obvious symptoms of thiamin deficiency or increased mortality, those fed the lowest doses of thiamin (0.08 and 0.50 mg thiamin kg−1 diet) had significantly decreased transketolase activity in the liver. In addition, the level of liver thiobarbituric acid reactive substances in fish fed the TD diet was 33–67% higher than that in fish with the thiamin-supplemented diet. There were no significant differences in superoxide dismutase activity between the different groups of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amcoff P, Elofsson UOE, Börjeson H et al (2002) Alterations of dopaminergic and serotonergic activity in the brain of sea-run Baltic salmon suffering a thiamine deficiency-related disorder. J Fish Biol 60:1407–1416

    Article  CAS  Google Scholar 

  • AOAC (Association of Official Analytical Chemists) (1990) Thiamin (vitamin B1) in foods. Fluorometric method. Official Methods of Analysis, no. 942.23, 15th edn. AOAC, Arlington, Va.

  • Ba A, N’Douba V, D’Almeida MA et al (2005) Effects of maternal thiamine deficiencies on the pyramidal and granule cells of the hippocampus of rat pups. Acta Neurobiol Exp (Wars) 65:387–398

    Google Scholar 

  • Baxter P (2003) Pyridoxine-dependent seizures: a clinical and biochemical conundrum. Biochim Biophys Acta 1647:36–41

    PubMed  CAS  Google Scholar 

  • Berthon HA, Kuchel PW, Nixon PF (1992) High control coefficient of transketolase in the nonoxidative pentose phosphate pathway of human erythrocytes: NMR, antibody, and computer simulation studiest. Biochemistry 31:12792–12798

    Article  PubMed  CAS  Google Scholar 

  • Blair PV, Kobayashi R, Edwards III HM et al (1999) Dietary thiamin level influences levels of its diphosphate form and thiamin-dependent enzymic activities of rat liver. J Nutr 129:641–648

    PubMed  CAS  Google Scholar 

  • Boonyaratpalin M (1997) Nutrient requirements of marine food fish cultured in Southeast Asia. Aquaculture 151:283–313

    Article  CAS  Google Scholar 

  • Calingasan NY, Chun WJ, Park LC et al (1999) Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol 58:946–958

    PubMed  CAS  Google Scholar 

  • Chen HY, Wu FC, Tang SY (1994) Sensitivity of transketolase to the thiamin status of juvenile marine shrimp (Penaeus monodon). Comp Biochem Phys A 109:655–659

    Google Scholar 

  • Ciccia RM, Langlais PJ (2000) An examination of the synergistic interaction of ethanol and thiamine deficiency in the development of neurological signs and long-term cognitive and memory impairments. Alcohol Clin Exp Res 24:622–634

    Article  PubMed  CAS  Google Scholar 

  • Cowey CB, Adron JW, Knox D et al. (1975) Studies on the nutrition of marine flatfish. The thiamine requirement of turbot (Scophthalmus maximus). Br J Nutr 34:383–390

    PubMed  CAS  Google Scholar 

  • Elmadfa I, Majchrzak D, Rust P et al. (2001) The thiamine status of adult humans depends on carbohydrate intake. Int J Vitam Nutr Res 71:217–221

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Ksiezak-Reding H, Sheu K-FR et al (1984) Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal. Neurochem Res 9:803–814

    Article  PubMed  CAS  Google Scholar 

  • Giguère J-F, Butterworth RF (1987) Activities of thiamine-dependent enzymes in two experimental models of thiamine deficiency encephalopathy: 3. transketolase. Neurochem Res 12:305–310

    Google Scholar 

  • Hashimoto Y, Arai S, Nose T (1970) Thiamine deficiency symptoms experimentally induced in the eel. Nippon Suisan Gakkai Shi 36:791–797

    CAS  Google Scholar 

  • Hazell AS, Pannunzio P, Rama Rao KV et al (2003) Thiamine deficiency results in downregulation of the GLAST glutamate transporter in cultured astrocytes. Glia 43:175–184

    Article  PubMed  Google Scholar 

  • Horecker BL (1957) The orcinol reaction for mixtures of pentose and heptulose. In: Colowick SP, Kaplan NO (eds) Methods of enzymology III. Academic Press, New York, pp 105–107

    Chapter  Google Scholar 

  • Huang JW, Tian LX, Du ZY et al (2005) Pyridoxine deficiency of grouper, Epinephelus coioides: physiological and biochemical alteration. Fish Physiol Biochem 31:331–337

    Article  CAS  Google Scholar 

  • Langlais PJ, Anderson G, Gu SX et al (1997) Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis 12:137–143

    Article  PubMed  CAS  Google Scholar 

  • Lehmitz R, Spannhof L (1977) Transketolase activity in thiamine deficiency of the kidney in rainbow trout (Salmo gairdneri) following continous feeding with raw herring. Arch Tierernahr 27:287–295

    PubMed  CAS  Google Scholar 

  • Lonsdale D (2006) A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid Based Complement Alternat Med 3:49–59

    Google Scholar 

  • Lukienko PI, Mel’nichenko NG, Zverinskii IV et al (2001) Antioxidant properties of thiamine. Bull Exp Biol Med 130:874–876

    Article  Google Scholar 

  • Martin PR, Singleton CK, Hiller-Sturmhöfel S (2003) The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health 27:134–142

    PubMed  Google Scholar 

  • Masumoto T, Hardy RW, Casillas E (1987) Comparison of tranketolase activity and thiamin pyrophosphate levels in erythrocytes and liver of rainbow trout (Salmo gairdneri) as indicators of thiamine status. J Nutr 117:1422–1426

    PubMed  CAS  Google Scholar 

  • Morito CLH, Conrad DH, Hilton JW (1986) The thiamin deficiency signs and requirement of rainbow trout (Salmo gairdneri, Richardson). Fish Physiol Biochem 1:93–104

    Article  CAS  Google Scholar 

  • Mulholland PJ (2006) Susceptibility of the cerebellum to thiamine deficiency. Cerebellum 5:55–63

    PubMed  CAS  Google Scholar 

  • Murai T, Andrews JW (1978) Thiamin requirement of channel catfish fingerlings. J Nutr 108:176–180

    PubMed  CAS  Google Scholar 

  • Nakagawasai O, Tadano T, Niijima F et al (2000) Immunohistochemical estimation of rat brain somatostatin on avoidance learning impairment induced by thiamine deficiency. Brain Res Bull 51:47–55

    Article  PubMed  CAS  Google Scholar 

  • Pannunzio P, Hazell AS, Pannunzio M et al (2000) Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: an in vitro model for the study of cell death mechanisms in Wernicke’s encephalopathy. J Neurosci Res 62:286–292

    Article  PubMed  CAS  Google Scholar 

  • Pekovich SR, Martin PR, Singleton CK (1998) Thiamine deficiency decreases steady-state transketolase and pyruvate dehydrogenase but not α-ketoglutarate dehydrogenase mRNA levels in three human cell types. J Nutr 128:683–687

    PubMed  CAS  Google Scholar 

  • Rains TM, Emmert JL, Baker DH et al (1997) Minimum thiamin requirement of weanling Sprague-Dawley outbred rats. J Nutr 127:167–170

    PubMed  CAS  Google Scholar 

  • Shaik Mohamed J, Sivaram V, Christopher Roy TS et al (2003) Dietary vitamin A requirement of juvenile greasy grouper (Epinephelus tauvina). Aquaculture 219:693–701

    Article  CAS  Google Scholar 

  • Shangari N, Bruce WR, Poon R et al (2003) Toxicity of glyoxals-role of oxidative stress, metabolic detoxification and thiamine deficiency. Biochem Soc Trans 31:1390–1393

    Article  PubMed  CAS  Google Scholar 

  • Sheu K-FR, Calingasan NY, Dienel GA et al (1996). Regional reductions of transketolase in thiamine-deficient rat brain. J Neurochem 67:684–691

    Article  PubMed  CAS  Google Scholar 

  • Singleton CK, Martin PR (2001) Molecular mechanisms of thiamine utilization. Curr Mol Med 1:197–207

    Article  PubMed  CAS  Google Scholar 

  • Todd KG, Butterworth RF (1999) Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia 25:190–198

    Article  PubMed  CAS  Google Scholar 

  • Warnock LG (1970) A new approach to erythrocyte transketolase measurement. J Nutr 100:1057–1062

    CAS  Google Scholar 

  • Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80

    Article  CAS  Google Scholar 

  • Wood CM (1993) Ammonia and urea metabolism and excretion. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 384–385

    Google Scholar 

  • Zhu W, Mai KS, Wu GT (2002) Thiamin requirement of juvenile abalone, Haliotis discus hannai Ino. Aquaculture 207:331–343

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Key Technologies R&D Program during the tenth 5-year plan, China (grant no. 2001DA505D/06). The authors are grateful to Dr. Wei Zhu (Ocean University of China) for providing some references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J.W., Tian, L.X., Du, Z.Y. et al. Effects of dietary thiamin on the physiological status of the grouper Epinephelus coioides . Fish Physiol Biochem 33, 167–172 (2007). https://doi.org/10.1007/s10695-007-9127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-007-9127-8

Keywords

Navigation