Skip to main content
Log in

The Statistical Effectiveness of Fire Protection Measures: Learning from Real Fires in Germany

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Fire protection measures are taken to prevent fires or to keep the resulting damage as low as possible. The statistical effectiveness of fire protection measures can be derived from a large number of fires that have already occurred. With the research paper presented here, such proof of effectiveness is rendered for certain specific fire protection measures, such as installed fire detection and fire alarm systems, fire extinguishing systems, smoke and heat exhaust systems, as well as according to the type of fire service. The investigation is based on a systematically collected database of 5,016 building fire interventions with 1,216 real fires by 29 fire services across Germany. The results can be used by applying engineering methods for quantitative risk analyses, within the scope of the risk-based performance level oriented planning of object-specific protection strategies. In this way, the performance level can be achieved effectively, flexibly and economically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Glor R, Seidel KW, Schubert KH (1969) Studie zur Entwicklung eines bundeseinheitlichen Berichtformulars als Unterlage für die statistische Auswertung [Study on the development of a national report form as a basis for statistical analysis]. Forschungsbericht der Vereinigung zur Förderung des Deutschen Brandschutzes e. V., Technisch-Wissenschaftlicher Beirat, Referat 2 [Research report by the German Fire Protection Association e.V., Technical-Scientific Advisory Board, Department 2], Issue May

  2. Glor R (1970) Entwicklung eines bundeseinheitlichen Brandberichtsformulars und dessen statistische Auswertung [Development of a national fire report form and its statistical evaluation]. VFDB—Zeitschrift 3:126–129

    Google Scholar 

  3. Döbbeling EP (2000) Welche Feuerwehrstatistik braucht Deutschland?—Erkenntnisse—Entwicklungen—Prognosen zur ganzheitlichen Statistik [Which fire service statistic does Germany need?—Findings—developments—forecasts for a holistic statistic]. VFDB—Zeitschrift 3:122–123

    Google Scholar 

  4. Schatz H (2001) Projektierung von statistischen Erhebungen mit örtlich und zeitlich differenzierter Aussage über die Tätigkeiten der Feuerwehren, Leitstellen und Brandschutzdienststellen [Project planning of statistical surveys with locally and temporally differentiated statements about the activities of fire services, receiving centres and fire protection offices]. Forschungsstelle für Brandschutztechnik an der Universität Karlsruhe [Research centre for fire protection technology at the University of Karlsruhe], Research report 125

  5. Alekhin E, Bruschlinsky N, Kolomietz J, Sokolov S, Wagner P (2013) Bundeseinheitliche Brand- und Feuerwehrstatistik [Uniform fire and fire service statistics]. VFDB—Zeitschrift für Forschung, Technik und Management im Brandschutz 2:59–62

    Google Scholar 

  6. Blätte H, Wagner P (2013) Statistik, die sehr unterbelichtete Wissensbasis der deutschen Feuerwehren. VFDB—Zeitschrift für Forschung, Technik und Management im Brandschutz 2:59–62

    Google Scholar 

  7. Festag S, Döbbeling EP (2020) vfdb-Brandschadenstatistik—Untersuchung der Wirksamkeit von (anlagentechnischen) Brandschutzmaßnahmen [vfdb fire loss statistic—investigation of the effectiveness of fire protection measures]. Technical report, German Fire Protection Association e.V

  8. Vereinigung zur Förderung des Deutschen Brandschutzes e.V (2014) [German Fire Protection Association e.V.]. vfdb-Brandschadenstatistik [vfdb fire loss statistic]. www.ref14.vfdb.de. Accessed 28 Mar 2014

  9. vfdb TB 04/01 (2020) Leitfaden Ingenieurmethoden des Brandschutzes [Guide to fire protection engineering methods]. Jochen Zehfuß (Hrsg.), Technical report 04-01, Altenberge; Braunschweig: vfdb—German Fire Protection Association e.V.]

  10. Festag S (8/2018) Untersuchung der Wirksamkeit von anlagentechnischen Brandschutzmaßnahmen—Exemplarische Ergebnisse für einen aktuellen Überblick [Investigation of the effectiveness of (technical) fire protection measures—exemplary results for a current overview]. Technische Sicherheit 7/8(8):34–40

  11. Müller J (2009) Zukunft der Feuerwehr—Feuerwehr der Zukunft im ländlichen Raum [Future of the Fire Services—Fire Services in Future in Rural Germany]. PhD thesis, University of Wuppertal

  12. Nationale Nachhaltigkeitsstrategie (10/2011) Nationale Nachhaltigkeitsstrategie—Fortschrittsbericht 2012 [National sustainability strategy—Progress report 2012]. Press and Information Office of the Federal Government. www.bundesregierung.de

  13. Festag S (09/2015) Ergebnisse zur Erhebung der Brandschadenstatistik. In: Jochen Zehfuß (Hrsg): Braunschweiger Brandschutz-Tage 2015. 29. Fachtagung Brandschutz bei Sonderbauten, Heft 227, pp 227–248

  14. Festag S (9/2017) Statistical analysis of the effectiveness of fire protection system—Extract from the project survey phases I of the German fire loss statistic. In Thorsten Schultze (Hrsg.), Proceedings, 16th International Conference on Automatic Fire Detection, 12–14. September 2016, Maryland (S. I-51-I-62). Universität Duisburg-Essen, Duisburg, ISBN 978-3-940402-11-0

  15. Musahl HP, Schwennen C (2000) Versuchsplanung [Design of Experiments]. Essay. Spektrum Akademischer Verlag, Heidelberg

  16. Campbell DT, Stanley JC (1966) Experimental and quasi-experimental designs for research. Rand McNally, Chicago

    Google Scholar 

  17. Hegger T (9/2014) Entwicklung einer nationalen Brandschadenstatistik [Development of a national fire loss statistic]. In Jochen Zehfuß (Hrsg.): Braunschweiger Brandschutz-Tage 2014. 28. Fachtagung Brandschutz und Sonderbauten, 16–17. September 2014, Heft 224, pp 261–272

  18. Festag S (05/2016) Ergebnisse aus dem Projekt “Brandschadenstatistik”: Der Wert des Projektes aus wissenschaftlicher Sicht [Results from the fire loss statistic project: The value of the project from a scientific point of view]. In: vfdb-Jahresfachtagung 2016, pp 209–226

  19. Doebbeling EP, Festag S, Witzigmann M (08/2012) Brandschadenstatistik zur Wirksamkeit anlagentechnischer Brandschutzmaßnahmen [Fire loss statistics for the Effectiveness of Fire Prevention Installations]. VFDB 2:123–127

  20. Festag S, Ruhs A, Döbbeling EP (8/2014) vfdb project on fire loss statistics (“Brandschadenstatistik”). BRANDSchutz/Deutsche Feuerwehr-Zeitung 6:22–24

  21. Bortz J (1993) Statistik für Sozialwissenschaftler [statistics for social scientists], 7th edn. Springer, Heidelberg, p 144

    Google Scholar 

  22. Musahl HP, Stolze G, Sarris V (1985) Experimentalpsychologisches Praktikum: Arbeitsbuch [experimental psychology laboratory: workbook]. Beltz Publisher, Weinheim

    Google Scholar 

  23. Lenhard W, Lenhard A (2016) Berechnung von Effektstärken [Calculation of effect sizes]. Psychometrica, Dettelbach. https://www.psychometrica.de/effektstaerke.html. https://doi.org/10.13140/RG.2.2.17823.92329

  24. Cohen D (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale, NJ

    MATH  Google Scholar 

  25. Van Weyenberge B, Deckers X, Caspeele R et al (2019) Development of an integrated risk assessment method to quantify the life safety risk in buildings in case of fire. Fire Technol 55:1211–1242. https://doi.org/10.1007/s10694-018-0763-6

    Article  Google Scholar 

  26. Watts JM, Hall JR (2016) Introduction to fire risk analysis. In: Hurley MJ, Gottuk DT, Hall JR, Harada K, Kuligowski ED, Puchovsky M (eds) SFPE handbook of fire protection engineering. Springer, New York, pp 2817–2826

    Chapter  Google Scholar 

  27. Van Coile R, Hopkin D, Lange D (2019) Guest editorial: probabilistic methods in fire safety engineering. Fire Technol 55:1107–1109. https://doi.org/10.1007/s10694-019-00874-0

    Article  Google Scholar 

  28. Manes M, Rush D (2019) A critical evaluation of BS PD 7974-7 structural fire response data based on USA fire statistics. Fire Technol 55:1243–1293. https://doi.org/10.1007/s10694-018-0775-2

    Article  Google Scholar 

  29. Van Coile R, Hopkin D, Lange D et al (2019) The need for hierarchies of acceptance criteria for probabilistic risk assessments in fire engineering. Fire Technol 55:1111–1146. https://doi.org/10.1007/s10694-018-0746-7

    Article  Google Scholar 

  30. PD 7974-7 (2019) Application of fire safety engineering principles to the design of buildings: probabilistic risk assessment. British Standards Published Document. BSI, London

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Festag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2, 3, 4, and 5.

Table 2 Fire Damage Criteria Without Activating Fire Protection Systems and When Activating Installed Fire Detection and Fire Alarm Systems, Fire Extinguishing Systems, Smoke and Heat Exhaust Systems [N = 5,016; nFire = 1,216]
Table 3 Fire Damage Criteria Depending on Fire Service Status: Professional Fire Services (FSprof.), Volunteer (FSvol.) and Private Fire Services (FSpriv.) [N = 5,016; nFire = 1,216]
Table 4 Evaluation of the Significance of the Results Using the W-value (Wilcoxon Test)
Table 5 Evaluation of the Significance and Effect Size of the Results Using the z-value (Wilcoxon Test)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Festag, S. The Statistical Effectiveness of Fire Protection Measures: Learning from Real Fires in Germany. Fire Technol 57, 1589–1609 (2021). https://doi.org/10.1007/s10694-020-01073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-020-01073-y

Keywords

Navigation