Skip to main content

Advertisement

Log in

Opposed-Flow Flame Spread and Extinction in Electric Wires: The Effects of Gravity, External Radiant Heat Flux, and Wire Characteristics on Wire Flammability

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Combustion of electric wires is the most probable cause of fire in human space activities. Therefore, the fire performance of electric wires in microgravity conditions must be thoroughly analyzed. This study investigates the opposed-flow flame spread and its limits in electric wires preheated by external radiation, under both normal gravity and microgravity, to understand their fire performance when exposed to external heat sources in such gravity conditions. The experiments were performed on low-density polyethylene (LDPE)-insulated copper (Cu) wires having an outer diameter of 4 mm and differing in core diameter (2.5 and 0.7 mm, corresponding to insulation thicknesses of 0.75 and 1.65 mm, respectively). Both standard and black LDPE insulations were used to study the effect of radiation absorption on the wire preheating and subsequent flame spread. The comparison of the flame spread limits revealed that the wire with the thicker Cu core was less flammable under both normal gravity and microgravity; in particular, its flammability further decreased in the case of microgravity, in contrast with thinner electric wires (~ 1 mm outer diameter), which exhibited higher flammability in the same gravity condition. These results suggest that different mechanisms, for thicker and thinner wires, determining the critical conditions to sustain flame spread under microgravity. This study provides valuable information about the fire performance of electric wires in space gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Altenkirch RA, Tang L, Sacksteder K et al (1998) Inherently unsteady flame spread to extinction over thick fuels in microgravity. Symp Combust 27:2515–2524. https://doi.org/10.1016/S0082-0784(98)80103-3

    Article  Google Scholar 

  2. Olson SL, Baum HR, Kashiwagi T (1998) Finger-like smoldering over thin cellulosic sheets in microgravity. Symp Combust 27:2525–2533. https://doi.org/10.1016/S0082-0784(98)80104-5

    Article  Google Scholar 

  3. Olson SL, Ferkul PV (2017) Microgravity flammability boundary for PMMA rods in axial stagnation flow: experimental results and energy balance analyses. Combust Flame 180:217–229. https://doi.org/10.1016/j.combustflame.2017.03.001

    Article  Google Scholar 

  4. Delichatsios MA, Altenkirch RA, Bundy MF et al (2000) Creeping flame spread along fuel cylinders in forced and natural flows and microgravity. Proc Combust Inst 28:2835–2842. https://doi.org/10.1016/S0082-0784(00)80706-7

    Article  Google Scholar 

  5. Olson S., Kashiwagi T, Fujita O et al (2001) Experimental observations of spot radiative ignition and subsequent three-dimensional flame spread over thin cellulose fuels. Combust Flame 125:852–864. https://doi.org/10.1016/S0010-2180(00)00249-2

    Article  Google Scholar 

  6. Nakamura Y, Kashiwagi T, Olson SL et al (2005) Two-sided ignition of a thin PMMA sheet in microgravity. Proc Combust Inst 30:2319–2325. https://doi.org/10.1016/j.proci.2004.07.037

    Article  Google Scholar 

  7. Takahashi J, Fujita O, Ito K (2005) The effect of irradiation angle on laser ignition of cellulose sheet in microgravity. Proc Combust Inst 30:2311–2317. https://doi.org/10.1016/j.proci.2004.08.097

    Article  Google Scholar 

  8. Bhattacharjee S, Wakai K, Takahashi S (2003) Predictions of a critical fuel thickness for flame extinction in a quiescent microgravity environment. Combust Flame 132:523–532. https://doi.org/10.1016/S0010-2180(02)00501-1

    Article  Google Scholar 

  9. Bhattacharjee S, Ayala R, Wakai K, Takahashi S (2005) Opposed-flow flame spread in microgravity-theoretical prediction of spread rate and flammability map. Proc Combust Inst 30:2279–2286. https://doi.org/10.1016/j.proci.2004.08.020

    Article  Google Scholar 

  10. Takahashi S, Ebisawa T, Bhattacharjee S, Ihara T (2015) Simplified model for predicting difference between flammability limits of a thin material in normal gravity and microgravity environments. Proc Combust Inst 35:2535–2543. https://doi.org/10.1016/j.proci.2014.07.017

    Article  Google Scholar 

  11. Bhattacharjee S, Laue M, Carmignani L et al (2016) Opposed-flow flame spread: A comparison of microgravity and normal gravity experiments to establish the thermal regime. Fire Saf J 79:111–118. https://doi.org/10.1016/j.firesaf.2015.11.011

    Article  Google Scholar 

  12. Bakhman NN, Aldabaev LI, Kondrikov BN, Filippov VA (1981) Burning of polymeric coatings on copper wires and glass threads: I. Flame propagation velocity. Combust Flame 41:17–34. https://doi.org/10.1016/0010-2180(81)90036-5

    Article  Google Scholar 

  13. Bakhman NN, Aldabaev LI, Kondrikov BN, Filippov VA (1981) Burning of polymeric coatings on copper wires and glass threads: II. Critical conditions of burning. Combust Flame 41:35–43. https://doi.org/10.1016/0010-2180(81)90037-7

    Article  Google Scholar 

  14. Kikuchi M, Fujita O, Ito K, et al (1998) Experimental study on flame spread over wire insulation in microgravity. Symp Combust 27:2507–2514. https://doi.org/10.1016/S0082-0784(98)80102-1

    Article  Google Scholar 

  15. Miyamoto K, Huang X, Hashimoto N et al (2016) Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Saf J 86:32–40. https://doi.org/10.1016/j.firesaf.2016.09.004

    Article  Google Scholar 

  16. Konno Y, Hashimoto N, Fujita O (2019) Downward flame spreading over electric wire under various oxygen concentrations. Proc Combust Inst 37:3817–3824. https://doi.org/10.1016/j.proci.2018.05.074

    Article  Google Scholar 

  17. Fujita O, Kikuchi M, Ito K, Nishizawa K (2000) Effective mechanisms to determine flame spread rate over ethylene-tetrafluoroethylene wire insulation: discussion on dilution gas effect based on temperature measurements. Proc Combust Inst 28:2905–2911. https://doi.org/10.1016/S0082-0784(00)80715-8

    Article  Google Scholar 

  18. Fujita O, Nishizawa K, Ito K (2002) Effect of low external flow on flame spread over polyethylene-insulated wire in microgravity. Proc Combust Inst 29:2545–2552. https://doi.org/10.1016/S1540-7489(02)80310-8

    Article  Google Scholar 

  19. Nakamura Y, Yoshimura N, Matsumura T et al (2008) Opposed-wind effect on flame spread of electric wire in sub-atmospheric pressure. J Therm Sci Technol 3:430–441. https://doi.org/10.1299/jtst.3.430

    Article  Google Scholar 

  20. Kobayashi Y, Konno Y, Huang X et al (2018) Effect of insulation melting and dripping on opposed flame spread over laboratory simulated electrical wires. Fire Saf J 95:1–10. https://doi.org/10.1016/j.firesaf.2017.10.006

    Article  Google Scholar 

  21. Nakamura Y, Yoshimura N, Ito H et al (2009) Flame spread over electric wire in sub-atmospheric pressure. Proc Combust Inst 32:2559–2566. https://doi.org/10.1016/j.proci.2008.06.146

    Article  Google Scholar 

  22. Huang X, Nakamura Y, Williams FA (2013) Ignition-to-spread transition of externally heated electrical wire. Proc Combust Inst 34:2505–2512. https://doi.org/10.1016/j.proci.2012.06.047

    Article  Google Scholar 

  23. Osorio AF, Mizutani K, Fernandez-Pello C, Fujita O (2015) Microgravity flammability limits of ETFE insulated wires exposed to external radiation. Proc Combust Inst 35:2683–2689. https://doi.org/10.1016/j.proci.2014.09.003

    Article  Google Scholar 

  24. Takahashi S, Ito H, Nakamura Y, Fujita O (2013) Extinction limits of spreading flames over wires in microgravity. Combust Flame 160:1900–1902. https://doi.org/10.1016/j.combustflame.2013.03.029

    Article  Google Scholar 

  25. Mizutani K, Miyamoto K, Hashimoto N et al (2018) Limiting oxygen concentration trend of ETFE-insulated wires under microgravity. Int J Microgravity Sci Appl 35:350104. https://doi.org/10.15011//jasma.35.350104

    Article  Google Scholar 

  26. Nagachi M, Mitsui F, Citerne J-M et al (2019) Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity? Proc Combust Inst 37:4155–4162. https://doi.org/10.1016/j.proci.2018.05.007

    Article  Google Scholar 

  27. Fujita O, Kyono T, Kido Y et al (2011) Ignition of electrical wire insulation with short-term excess electric current in microgravity. Proc Combust Inst 33:2617–2623. https://doi.org/10.1016/j.proci.2010.06.123

    Article  Google Scholar 

  28. Takano Y, Fujita O, Shigeta N et al (2013) Ignition limits of short-term overloaded electric wires in microgravity. Proc Combust Inst 34:2665–2673. https://doi.org/10.1016/j.proci.2012.06.064

    Article  Google Scholar 

  29. Shimizu K, Kikuchi M, Hashimoto N, Fujita O (2017) A numerical and experimental study of the ignition of insulated electric wire with long-term excess current supply under microgravity. Proc Combust Inst 36:3063–3071. https://doi.org/10.1016/j.proci.2016.06.134

    Article  Google Scholar 

  30. Kim MK, Chung SH, Fujita O (2011) Effect of AC electric fields on flame spread over electrical wire. Proc Combust Inst 33:1145–1151. https://doi.org/10.1016/j.proci.2010.06.155

    Article  Google Scholar 

  31. Lim SJ, Kim M, Park J et al (2015) Flame spread over electrical wire with AC electric fields: internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping. Combust Flame 162:1167–1175. https://doi.org/10.1016/j.combustflame.2014.10.009

    Article  Google Scholar 

  32. Lim SJ, Park SH, Park J et al (2017) Flame spread over inclined electrical wires with AC electric fields. Combust Flame 185:82–92. https://doi.org/10.1016/j.combustflame.2017.07.010

    Article  Google Scholar 

  33. Citerne J-M, Dutilleul H, Kizawa K et al (2016) Fire safety in space: investigating flame spread interaction over wires. Acta Astronaut 126:500–509. https://doi.org/10.1016/j.actaastro.2015.12.021

    Article  Google Scholar 

  34. Kashiwagi T (1975) A study of flame spread over a porous material under external radiation fluxes. Symp Combust 15:255–265. https://doi.org/10.1016/S0082-0784(75)80302-X

    Article  Google Scholar 

  35. Quintiere J (1981) A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus. Fire Mater 5:52–60. https://doi.org/10.1002/fam.810050204

    Article  Google Scholar 

  36. Fernandez-Pello AC (1977) Downward flame spread under the influence of externally applied thermal radiation. Combust Sci Technol 17:1–9. https://doi.org/10.1080/00102209708946807

    Article  Google Scholar 

  37. Fernandez-Pello AC (1977) Upward laminar flame spread under the influence of externally applied thermal radiation. Combust Sci Technol 17:87–98. https://doi.org/10.1080/00102207708946818

    Article  Google Scholar 

  38. Kobayashi Y, Konno Y, Huang X et al (2019) Laser piloted ignition of electrical wire in microgravity. Proc Combust Inst 37:4211–4219. https://doi.org/10.1016/j.proci.2018.06.089

    Article  Google Scholar 

  39. ISO4589-2 Plastics-determination of burning behaviour by oxygen index part 2: ambient temperature test

  40. T’ien JS (1972) oscillatory burning of solid propellants including gas phase time lag. Combust Sci Technol 5:47–54. https://doi.org/10.1080/00102207208952502

    Article  Google Scholar 

  41. Chan WY, T’ien JS (1978) An experiment on spontaneous flame oscillation prior to extinction. Combust Sci Technol 18:139–143. https://doi.org/10.1080/00102207808946845

    Article  Google Scholar 

  42. Olson SL, Ferkul P V, Marcum JW (2019) High-speed video analysis of flame oscillations along a PMMA rod after stagnation region blowoff. Proc Combust Inst 37:1555–1562. https://doi.org/10.1016/j.proci.2018.05.080

    Article  Google Scholar 

  43. Kumar A, Tien JS (2006) A computational study of low oxygen flammability limit for thick solid slabs. Combust Flame 146:366–378. https://doi.org/10.1016/j.combustflame.2006.02.008

    Article  Google Scholar 

  44. Nakamura Y, Kizawa K, Mizuguchi S et al (2016) Experimental study on near-limiting burning behavior of thermoplastic materials with various thicknesses under candle-like burning configuration. Fire Technol 52:1107–1131. https://doi.org/10.1007/s10694-016-0567-5

    Article  Google Scholar 

  45. Huang X, Link S, Rodriguez A et al (2019) Transition from opposed flame spread to fuel regression and blow off: effect of flow, atmosphere, and microgravity. Proc Combust Inst 37:4117–4126. https://doi.org/10.1016/j.proci.2018.06.022

    Article  Google Scholar 

  46. Carmignani L, Bhattacharjee S (2019) Burn angle and its implications on flame spread rate, mass burning rate, and fuel temperature for downward flame spread over thin PMMA. Combust Sci Technol https://doi.org/10.1080/00102202.2019.1618286

    Article  Google Scholar 

  47. Johnston MC, T’ien JS (2017) Gravimetric measurement of solid and liquid fuel burning rate near and at the low oxygen extinction limit. Fire Saf J 91:140–146. https://doi.org/10.1016/j.firesaf.2017.03.027

    Article  Google Scholar 

  48. Guo F, Ozaki Y, Nishimura K et al (2019) Experimental study on flame stability limits of lithium ion battery electrolyte solvents with organophosphorus compounds addition using a candle-like wick combustion system. Combust Flame 207:63–70. https://doi.org/10.1016/J.COMBUSTFLAME.2019.05.019

    Article  Google Scholar 

  49. Hu L, Zhang Y, Yoshioka K et al (2015) Flame spread over electric wire with high thermal conductivity metal core at different inclinations. Proc Combust Inst 35:2607–2614. https://doi.org/10.1016/j.proci.2014.05.059

    Article  Google Scholar 

  50. Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, Chichester

    Book  Google Scholar 

  51. Hallman JR (1971) Ignition characteristics of plastics and rubber. The University of Oklahoma, Norman

    Google Scholar 

  52. Girods P, Bal H, Biteau H et al (2011) Comparison of pyrolysis behavior results between the cone calorimeter and the fire propagation apparatus heat sources. Fire Saf Sci 10:889–901. https://doi.org/10.3801/IAFSS.FSS.10-889

    Article  Google Scholar 

  53. Bal N, Raynard J, Rein G et al (2013) Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources. Int J Heat Mass Transf 61:742–748. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.017

    Article  Google Scholar 

  54. Boulet P, Parent G, Acem Z et al (2014) Radiation emission from a heating coil or a halogen lamp on a semitransparent sample. Int J Therm Sci 77:223–232. https://doi.org/10.1016/j.ijthermalsci.2013.11.006

    Article  Google Scholar 

  55. Boulet P, Gérardin J, Acem Z et al (2014) Optical and radiative properties of clear PMMA samples exposed to a radiant heat flux. Int J Therm Sci 82:1–8. https://doi.org/10.1016/j.ijthermalsci.2014.03.013

    Article  Google Scholar 

  56. Kobayashi Y, Huang X, Nakaya S et al (2017) Flame spread over horizontal and vertical wires: the role of dripping and core. Fire Saf J 91:112–122. https://doi.org/10.1016/j.firesaf.2017.03.047

    Article  Google Scholar 

  57. Olson SL (1991) Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects. Combust Sci Technol 76:233–249. https://doi.org/10.1080/00102209108951711

    Article  Google Scholar 

  58. Huang X (2018) Critical drip size and blue flame shedding of dripping ignition in fire. Sci Rep 8:16528. https://doi.org/10.1038/s41598-018-34620-3

    Article  Google Scholar 

  59. Wharton RK (1981) The effect of sample size on the burning behaviour of thermoplastic materials in the critical oxygen index test. Fire Mater 5:73–76. https://doi.org/10.1002/fam.810050207

    Article  Google Scholar 

  60. Nakamura Y, Azumaya K, Iwakami J, Wakatsuki K (2015) Scale modeling of flame spread over PE-coated electric wires. In: Saito K, Ito A, Nakamura Y, Kuwana K (eds) Progress in scale modeling, vol II. Springer, Cham, pp 275–292

    Google Scholar 

Download references

Acknowledgements

This research is supported by JAXA as a candidate experiment for the third stage use of JEM/ISS titled “Evaluation of gravity impact on combustion phenomenon of solid material toward higher fire safety” (called as “FLARE”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Fujita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konno, Y., Kobayashi, Y., Fernandez-Pello, C. et al. Opposed-Flow Flame Spread and Extinction in Electric Wires: The Effects of Gravity, External Radiant Heat Flux, and Wire Characteristics on Wire Flammability. Fire Technol 56, 131–148 (2020). https://doi.org/10.1007/s10694-019-00935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-019-00935-4

Keywords

Navigation