Skip to main content
Log in

Numerical Investigation of Back-Layering Length and Critical Velocity in Curved Subway Tunnels with Different Turning Radius

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Curved tunnels are inevitable subjected to the city underground geological conditions. Due to the catastrophic consequence of tunnel fires with high population density, the related researches on fire safety of curved tunnel are full of significance. Therefore, a series of curved subway tunnels with turning radius of 300–1000 m were investigated numerically by FDS 5.5.3 in terms of the smoke back-layering length and critical ventilation velocity under the heat release rate of 5–10 MW. Theoretical analysis shows that the curved tunnel with the local resistance has an advantage of preventing smoke spreading compared with straight tunnel. The simulation results also indicated that both the smoke back-layering length and the critical ventilation velocity increased with the rising turning radius, and the straight tunnel has the largest values. In fact, the local resistance impact factor for the smoke back-layering length in the curved tunnel, \( k_{f} \), was controlled by turning radius \( R \) and ventilation velocity \( V \). The dimensionless critical velocity increased slightly from \( 0.638Q^{*1/3} \) to \( 0.669Q^{*1/3} \) when the turning radius increased from 300 m to 1000 m. Without considering the influence of turning radius (local resistance), previous models cannot be applied to the curved tunnel. The improved prediction models about smoke back-layering length and critical velocity with the factor of turning radius could provide a technical guideline for the tunnel ventilation designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Abbreviations

\( H \) :

Tunnel height (m)

\( Fr \) :

Froude number

\( T_{\hbox{max} } \) :

Maximal temperature of smoke (K)

\( u \) :

Velocity of smoke gas (m/s)

\( D^{*} \) :

Dimensionless grid size (−)

dd:

Grid size of simulation mesh (m)

\( L \) :

Back-layering length (m)

\( Q \) :

Total heat release rate (kW)

\( \dot{Q}_{L} \) :

Heat loss to the tunnel ceiling (kW)

\( k_{f} \) :

Local resistance impact factor

\( Q^{*} \) :

Dimensionless heat release rate (−)

\( V \) :

Longitudinal ventilation velocity (m/s)

\( V^{*} \) :

Dimensionless ventilation velocity (−)

\( \mathop H\limits^{\_\_} \) :

Hydraulic diameter of tunnel (m)

\( A_{b} \) :

Cross-sectional area of blockage (m2)

\( x \) :

Location of smoke temperature (m)

\( C_{k} \) :

A constant in Equation (16)

\( \rho_{0} \) :

Ambient air density (kg/m3)

\( T_{0} \) :

Ambient air temperature (K)

\( R \) :

Turning radius of curved subway tunnel (m)

\( T_{f} \) :

Smoke gas temperature (K)

\( c_{p} \) :

Thermal capacity of air (J kg−1 K−1)

\( g \) :

Gravitational acceleration (m/s2)

\( A \) :

Tunnel cross-sectional area (m2)

\( \dot{Q}_{flocal} \) :

Heat loss due to the local-resistance (kW)

\( \lambda_{1} \) :

A coefficient in Equation (16)

\( l^{*} \) :

Dimensionless smoke back-layering length (−)

\( V_{c} \) :

Critical ventilation velocity (m/s)

\( L_{f - b} \) :

Distance between fire source and blockage (m)

\( h \) :

Thickness of back-flowed smoke gas (m)

\( R^{*} \) :

Dimensionless turning radius of curved tunnel (-)

\( x_{fire} \) :

Location of fire source (m)

\( L_{S}^{*} \) :

Dimensionless smoke back-layering length in straight tunnel (−)

\( L_{C}^{*} \) :

Dimensionless smoke back-layering length in curved tunnel (−)

\( V_{SC}^{*} \) :

Dimensionless critical velocity in the straight tunnel (−)

\( P_{S} \) :

Static pressure difference between the smoke gas front and ambient air (Pa)

\( P_{d} \) :

Hydraulic pressure of the incoming air flow (Pa)

\( \Delta T \) :

Temperature difference between smoke and ambient air (K)

\( \Delta T_{fire} \) :

Temperature difference between smoke above fire source and ambient air (K)

References

  1. Ingason H, Li YZ, Lönnermark A (2014) Tunnel fire dynamics. Springer, Berlin

    Google Scholar 

  2. Chen C-K, Zhu C-X, Liu X-Y, Yu N-H (2016) Experimental investigation on the effect of asymmetrical sealing on tunnel fire behavior. Int J Heat Mass Transf 92:55–65

    Article  Google Scholar 

  3. Gannouni S, Maad RB (2015) Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires. Tunn Undergr Sp Technol 48:147–155

    Article  Google Scholar 

  4. Kang K (2010) Characteristic length scale of critical ventilation velocity in tunnel smoke control. Tunn Undergr Sp Technol 25 (3):205–211

    Article  Google Scholar 

  5. Tsai K-C, Chen H-H, Lee S-K (2010) Critical ventilation velocity for multi-source tunnel fires. J Wind Eng Ind Aerodyn 98 (10):650–660

    Article  Google Scholar 

  6. Hu L, Huo R, Chow W (2008) Studies on buoyancy-driven back-layering flow in tunnel fires. Exp Therm Fluid Sci 32 (8):1468–1483

    Article  Google Scholar 

  7. Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J 45 (6):361–370

    Article  Google Scholar 

  8. Tang W, Hu L, Chen L (2013) Effect of blockage-fire distance on buoyancy driven back-layering length and critical velocity in a tunnel: an experimental investigation and global correlations. Appl Therm Eng 60 (1):7–14

    Article  Google Scholar 

  9. Chen L, Hu L, Zhang X, Zhang X, Zhang X, Yang L (2014) Thermal buoyant smoke back-layering flow length in a longitudinal ventilated tunnel with ceiling extraction at difference distance from heat source. Appl Therm Eng 78:129–135

    Article  Google Scholar 

  10. Weng MC, Lu XL, Liu F, Shi XP, Yu LX (2015) Prediction of backlayering length and critical velocity in metro tunnel fires. Tunn Undergr Sp Technol 47:64–72

    Article  Google Scholar 

  11. Thomas P (1958) The movement of buoyant fluid against a stream and the venting of underground fires. Fire Res Note 351:1

    Google Scholar 

  12. Heselden A (1978) Studies of fire and smoke behaviour relevant to tunnels. Building Research Establishment, Fire Research Station

  13. Danziger N, Kennedy W (1982) Longitudinal ventilation analysis for the Glenwood canyon tunnels. In: Proceedings of the fourth international symposium aerodynamics and ventilation of vehicle tunnels, pp 169–186

  14. Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Saf J 25 (4):305–322

    Article  Google Scholar 

  15. Wu Y, Bakar MA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems–a study of the critical velocity. Fire Saf J 35 (4):363–390

    Article  Google Scholar 

  16. Zhong W, Li Z, Wang T, Liang T, Liu Z (2015) Experimental study on the influence of different transverse fire locations on the critical longitudinal ventilation velocity in tunnel fires. Fire Technol 51 (5):1217–1230

    Article  Google Scholar 

  17. Zhong W, Duanmu W, Wang T, Liang T (2017) A study of the critical velocity of smoke bifurcation flow in tunnel with longitudinal ventilation. Fire Technol 53 (2):1–19

    Article  Google Scholar 

  18. Li YZ, Lei B, Ingason H (2014) Theoretical and experimental study of critical velocity for smoke control in a tunnel cross-passage. Fire Technol 50 (5):1325–1325. doi:10.1007/s10694-013-0347-4

    Article  Google Scholar 

  19. Chow W, Gao Y, Zhao J, Dang J, Chow C, Miao L (2015) Smoke movement in tilted tunnel fires with longitudinal ventilation. Fire Saf J 75:14–22

    Article  Google Scholar 

  20. Bailey J, Forney GP, Tatem P, Jones W (2002) Development and validation of corridor flow submodel for CFAST. J Fire Prot Eng 12 (3):139–161

    Article  Google Scholar 

  21. Kunsch J (1998) Critical velocity and range of a fire-gas plume in a ventilated tunnel. Atmos Environ 33 (1):13–24

    Article  Google Scholar 

  22. Kurioka H, Oka Y, Satoh H, Sugawa O (2003) Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Saf J 38 (4):319–340

    Article  Google Scholar 

  23. McGrattan K, Hostikka S, Floyd JE (2013) Fire dynamics simulator, user’s guide. NIST special publication 1019

  24. Ji J, Wan H, Li K, Han J, Sun J (2015) A numerical study on upstream maximum temperature in inclined urban road tunnel fires. Int J Heat Mass Transf 88:516–526

    Article  Google Scholar 

  25. Weng MC, Yu LX, Liu F, Nielsen PV (2014) Full-scale experiment and CFD simulation on smoke movement and smoke control in a metro tunnel with one opening portal. Tunn Undergr Sp Technol 42 (0):96–104. doi:http://dx.doi.org/10.1016/j.tust.2014.02.007

    Article  Google Scholar 

  26. Wang F, Wang M (2016) A computational study on effects of fire location on smoke movement in a road tunnel. Tunn Undergr Sp Technol 51:405–413

    Article  Google Scholar 

  27. Yu LX, Beji T, Zadeh SE, Liu F, Merci B (2016) Simulations of smoke flow fields in a wind tunnel under the effect of an air curtain for smoke confinement. Fire Technol 52 (6):2007–2026

    Article  Google Scholar 

  28. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST special publication 1018

  29. McDermott R, McGrattan K, Hostikka S (2008) Fire dynamics simulator (version 5) technical reference guide. NIST Spec Publ 1018:27–35

    Google Scholar 

  30. Lei W, Li A, Yang J, Gao R, Deng B (2014) Simulation of the natural smoke filling in subway tunnel fire. In: Proceedings of the 8th international symposium on heating, ventilation and air conditioning. Springer, pp 29–36

  31. Ma TG, Quintiere JG (2003) Numerical simulation of axi-symmetric fire plumes: accuracy and limitations. Fire Saf J 38 (5):467–492. doi:http://dx.doi.org/10.1016/S0379-7112(02)00082-6

    Article  Google Scholar 

  32. Baum H, McCaffrey B (1989) Fire induced flow field–theory and experiment. In: Fire safety science–proceedings of the second international symposium. Hemisphere Publishing Newport, Australia, pp 129–148

  33. Wang YF, Sun XF, Liu S, Yan PN, Qin T, Zhang B (2016) Simulation of back-layering length in tunnel fire with vertical shafts. Appl Therm Eng 109:344–350

    Article  Google Scholar 

  34. Hu L, Fong N, Yang L, Chow W, Li Y, Huo R (2007) Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data. J Hazard Mater 140 (1):293–298

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 51323010), National Key Research and Development Program of China (Project No. 2016YFC0800603) and Fundamental Research Funds for the Central Universities (No.WK2320000035). We deeply appreciate them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Cheng.

Ethics declarations

Conflict of interest

The authors do not have any possible conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yang, H., Yao, Y. et al. Numerical Investigation of Back-Layering Length and Critical Velocity in Curved Subway Tunnels with Different Turning Radius. Fire Technol 53, 1765–1793 (2017). https://doi.org/10.1007/s10694-017-0656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-017-0656-0

Keywords

Navigation