Skip to main content
Log in

Measuring Radiation Heat Fluxes from a Jet Fire Using a Lumped Capacitance Model

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

This paper presents an experimental methodology for measuring the incident radiation heat flux distribution surrounding a jet fire. The methodology uses a line of surface thermocouples attached to a steel bar. The thermocouples measure the temperature time history of the steel bar in response to an imposed incident radiation heat flux. The theoretical basis of the methodology is an energy balance for any point on the steel bar. The energy balance is formulated as a lumped capacitance model. All of the assumptions in the theory are shown to be valid and the accuracy of the experimental methodology demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

Bi :

Biot number

c steel :

Specific heat capacity of steel

C1, C2:

Turbulence model constants

D :

Burner diameter

E n :

Root mean squared difference between measured and predicted temperature

Fr :

Froude number

g :

Gravitational acceleration

h :

Convective heat transfer coefficient

I inc :

Incident intensity

k steel :

Thermal conductivity of steel

N :

Number of entries in a time series

Nu :

Nusselt number

q conv :

Convective heat flux

q emit :

Emitted radiation heat flux

q inc :

Incident radiation heat flux

q refl :

Reflected radiation heat flux

r :

Radial coordinate

Ra :

Rayleigh number

Re :

Reynolds number

T :

Temperature

T amb :

Bulk air temperature

T i :

Initial temperature

T m :

Measured temperature

T n :

Predicted temperature at n∆t time

T rise :

Dimensionless temperature rise

T steady :

Steady state temperature

t max :

Maximum time in temperature–time series

U 0 :

Source velocity

z :

Axial coordinate

:

Thickness of steel bar

∆t :

Time step

∆Ω :

Field of view

∆q inc :

Uncertainty in the incident radiation heat flux

∆T :

Uncertainty in the temperature

∆ε :

Uncertainty in the surface emissivity

ρ steel :

Density of steel

θ :

Angle of incidence

σ :

Stefan Boltzmann constant

Ω :

Ray orientation

References

  1. Jeng SM, Chen LD, Faeth GM (1982) The structure of buoyant methane and propane diffusion flames. In: Nineteenth symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 349–358

  2. Jeng, S.M., Lai, M.C. and Faeth G.M., Nonluminous radiation in turbulent buoyant axisymmetric flames, Combust Sci and Tech., 1984, 40, 41-53.

    Article  Google Scholar 

  3. Fairweather, M., Jones, W.P. and Lindstedt, R.P., Predictions of Radiative Heat Transfer from a Turbulent Reacting Jet in a Cross-Wind, Combust Flame, 1992, 89, 45-63.

    Article  Google Scholar 

  4. Onokpe O. and Cumber P.S., (2009) Modelling lifted hydrogen jet fires using the boundary layer equations, J. Applied Thermal Engineering, 29: 1383-1390.

    Article  Google Scholar 

  5. Cumber PS. and Spearpoint M. A computational flame length methodology for propane jet fires, Fire Safety Journal, 2007, 41, 215-228.

    Article  Google Scholar 

  6. Cumber P.S., (2009) Accelerating ray convergence in jet fire radiation modelling using Sobol sequences, Int. J. Thermal Science, 48: 1338-1347.

    Article  Google Scholar 

  7. Heat flux transducers and infrared radiometers for the direct measurement of heat transfer rates. Medtherm Corporation.

  8. Cumber P.S. and Fairweather M., (2005) Evaluation of flame emission models combined with the discrete transfer method for combustion system simulation, Int J of Heat and Mass Transfer, 48: 5221-5239.

    Article  MATH  Google Scholar 

  9. Ingason, H. and de Ris, J., Flame heat transfer in storage geometries, Fire Safety Journal, 1998, 31, 39-60.

    Article  Google Scholar 

  10. Blanchat TK, Humphries LL, Gill W (2000) Sandia heat flux gauge thermal response and uncertainty models. Sandia National Laboratories Report SAND2000-1111

  11. Ingason, H. and Wickstrom, U., Measuring incident radiant heat flux using the plate thermometer, Fire Safety Journal, 2007, 42, 161-166.

    Article  Google Scholar 

  12. Nakos JT (2005) Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires. Sandia National Laboratories Report SAND2005-7144

  13. Siegel, R. and Howell, J.R., Thermal Radiation Heat Transfer, 3rd Edition, Hemisphere Publishing Corporation, 1992.

    Google Scholar 

  14. Moran MJ, Shapiro HN, Munson BR, DeWitt DP (2003) Introduction to thermal systems engineering. Wiley, New York

    Google Scholar 

  15. Cumber P.S. and Passarelli K.S., (2007) The numerical analysis of precision quartz oscillator simulation – An area corrected flux finite volume scheme, J Num Heat Transfer Part B. 52: 201-230.

    Article  Google Scholar 

  16. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  17. Jones, W.P. and Launder, B.E., The prediction of laminarization with a two-equation turbulence model, Int. J. Heat Mass Transfer, 1972, 15, 301-314.

    Article  Google Scholar 

  18. Pope, S.B., An explanation of the turbulent round-jet/plane-jet anomaly, AIAA J, 1978, 16, 279-281.

    Article  Google Scholar 

  19. Moss JB, Stewart CD, Syed K (1988) Flow field modelling of soot formation at elevated pressure. In: Twenty-second symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 413–423.

  20. Fairweather M, Jones WP, Ledin S, Lindstedt P (1992) Predictions of soot formation in turbulent non-premixed propane flames. In: Twenty-second symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 1067–1074

  21. Cumber P.S. and Spearpoint M., (2006) Modelling lifted methane jet fires using the boundary layer equations, J Num Heat Transfer Part B Fundamentals, 49: 239-258.

    Article  Google Scholar 

  22. Chase MW, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, vol 14, 3rd edn, J Phys Chem Ref Data

  23. Lockwood FC, Shah NG (1981) A new radiation solution method for incorporation in general combustion prediction procedures. In: Eighteenth symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 1405–1414.

  24. Cumber P.S., (1995) Improvements to the discrete transfer method of calculating radiative heat transfer, Int J of Heat and Mass Transfer, 38: 2251-2258.

    Article  MATH  Google Scholar 

  25. Cumber P.S., (2000) Ray effect mitigation in jet fire radiation modelling, Int J of Heat and Mass Transfer, 43: 935-943.

    Article  MATH  Google Scholar 

  26. Grosshandler, W.L., Radiative heat transfer in nonhomogeneous gases: A simplified approach, Int. J of Heat and Mass Transfer, 1980, 23, 1447-1459.

    Article  Google Scholar 

  27. Cumber P.S., Fairweather M., and Ledin S., Application of wide band radiation models to non-homogeneous combustion systems, Int. J. Heat Mass Transfer, 41, (1998), 1573-1584.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Cumber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumber, P.S. Measuring Radiation Heat Fluxes from a Jet Fire Using a Lumped Capacitance Model. Fire Technol 47, 665–685 (2011). https://doi.org/10.1007/s10694-010-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-010-0182-9

Keywords

Navigation