Skip to main content

Advertisement

Log in

Scale Tests of Smoke Filling in Large Atria

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

The large Atriums of airports and railway stations facilitate the access to transport vehicles including shopping malls, cultural spaces, etc. For this reason, they are used by an elevated number of passengers and visitors. Numerous malls contain a large atrium too, as a principal access or as a food court, and they usually have high occupant loads. In case of fire, the smoke can affect human health seriously, and people may be unable to reach a safe place before being overcome by the conditions created by the fire. The traditional approach to fire protection by compartmentation is not applicable to these large volume spaces and the ability of sprinklers to suppress fire in spaces with high ceilings is limited. This work evaluated—using scale tests, fire computer modeling and analytical methods—a comparative analysis of the different results obtained for the smoke control in large atria when the smoke filling approach is applied. Smoke layer and plume temperatures have been registered during the scale test—based on the Froude Modeling—and they have been compared opposite to the FDS scale simulation and the FDS large scale simulation. Smoke layer descend has been studied and compared for the scale test, the computer simulations developed and the empirical equations used. The results demonstrated that the evacuation time calculation is conservative when the zone computer model CFAST, the field computer model FDS or the empirical equations are used, although it turns out to be difficult to define the interface height based on the temperatures registered during the scale tests. The zone computer models generate results faster than field computer models or smoke tests, so it would be necessary to develop better calculation algorithms to define the smoke layer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Thirty Spanish railway stations were analyzed, corresponding to the major number of passengers/year and architectural complexity. Around the world, thirty railway stations were analyzed too (4 in USA and Canada, 19 in Europe and 7 in Asia).

Abbreviations

C p :

Specific heat (kJ/kg K)

G :

Acceleration of gravity (m/s2)

κ :

1.1 (m/kW1/3 s)

l :

Length (m)

l f :

Length in the full-scale facility (m)

l m :

Length in the model (m)

\( \dot{m} \) :

Mass flow (kg/s)

t :

Time (s)

t cj :

Transport time lag of plume (s)

t f :

Time in the full-scale facility (s)

t g :

Growth time (s)

t m :

Time in the model (s)

t pl :

Transport time lag of plume (s)

t t :

Total transport lag time (s)

x f :

Position in the full-scale facility (m)

x m :

Position in the model (m)

z :

Height of the first indication of smoke above the fire surface (m)

z int :

Interface height (m)

z 1 :

Mean flame height (m)

z 0 :

Virtual origin height (m)

A :

Cross-sectional area of the atrium (m2)

A f :

Fire surface (m2)

C ef1 :

1.11

C ef2 :

0.937

D f :

Fire diameter (m)

H :

Ceiling height above the fire (m)

\( \dot{Q} \) :

Heat release rate (kW)

\( \dot{Q}_{C} \) :

Convective heat release rate of fire (kW)

Q f :

Heat release rate in the full-scale facility (kW)

Q m :

Heat release rate in the model (kW)

T a :

Ambient temperature (K)

T cp :

Centerline plume temperature (K)

T f :

Temperature in the full-scale facility (K)

T 1 :

Cold layer temperature (K)

T m :

Temperature in the model (K)

T 0 :

Ambient temperature (K)

T u :

Hot layer temperature (K)

U :

Velocity (m/s)

U f :

Velocity in the full-scale facility (m/s)

U m :

Velocity in the model (m/s)

V f :

Volumetric flow in the full-scale facility (m3/s)

V m :

Volumetric flow in the model (m3/s)

∆H c :

Heat combustion (kJ/kg)

∆p f :

Pressure difference in the full-scale facility (Pa)

∆p m :

Pressure difference in the model (Pa)

η :

−0.33 (m/kW1/3 s)

ρ f :

Density of the gas in the full-scale facility (kg/m3)

ρ m :

Density of the gas in the model (kg/m3)

ρ 0 :

Outside air density (kg/m3)

χ C :

Convective fraction of heat release (dimensionless)

References

  1. Klote, J.H., Milke, J.A. 2002 Principles of Smoke Management. Refrigerating and Air Conditioning Engineers, Inc., Atlanta.

    Google Scholar 

  2. Heskestad, G. (1983) Virtual Origins of Fire Plumes. Fire Safety Journal 5(2), 109–114.

    Article  Google Scholar 

  3. Nowler SP (1987) Enclosure environment characterization testing for the baseline validation of computer fire simulation codes, NUREG/CR-4681, SAND 86-1296, Sandia National Laboratories

  4. Mulholland, G. et al. 1981 Smoke Filling in an Enclosure. Fire Science and Technology 1(1), 1–31.

    Article  Google Scholar 

  5. Cooper LY, Stroup DW (1982) Calculating safe egress time (ASET)—a computer program and user’s guide. NBSIR 82-2578, National Bureau of Standards

  6. Hagglund B, Jansson R, Nireus K (1985) Smoke filling experiments in a 6×6×6 meter enclosure. FOA report C 20585-D6, National Defense Research Institute of Sweden, Stockholm

  7. Chung, K·C., Tung, H. 2005 A Simplified Model for Smoke Filling Time Calculation with Sprinkler Effects. Journal of Fire Sciences. 23(4), 279–301.

    Article  Google Scholar 

  8. Kerber, S., Milke, M.A. 2007 Using FDS to Simulate Smoke Layer Interface Height in a Simple Atrium. Fire Technology 43(1), 45–75.

    Article  Google Scholar 

  9. Mowrer, F·W. 1999 Enclosure Smoke Filling Revisited. Fire Safety Journal 33(2), 93–114.

    Article  Google Scholar 

  10. Chow, W·K. 1997 On the Use of Time Constants for Specifying the Smoke Filling Process in Atrium Halls. Fire Safety Journal 28(2), 165–177.

    Article  Google Scholar 

  11. GIDAI. Modelado Físico del Movimiento de Humos en caso de Incendio en Atrios. Ministerio de Vivienda. Estudio en desarrollo

  12. Karlsson, B., Quintiere, J.G. 2000 Enclosure Fire Dynamics. CRC Press, London.

    Google Scholar 

  13. Morton BR, Taylor G, Turner JS (1956) Turbulent Gravitational Convection from Maintained and Instantaneous Sources. Proceeding of the Royal Society of London 234(1196):1–23

    Article  MATH  MathSciNet  Google Scholar 

  14. NFPA 92B, “Guide for Smoke Management Systems in Malls, Atria, and Larges Area”, National Fire Protection Association. Quincy, 2000 Edition

    Google Scholar 

  15. Newmann, J.S. 1988 Principles of Fire Detection. Fire Technology 24(2), 116–127.

    Article  Google Scholar 

  16. Mowrer, F·W. (1990) Lag Times Associated with Fire Detection and Suppression. Fire Technology 26(3), pp. 244–265.

    Article  Google Scholar 

  17. Heskestad G, Delichatsios MA (1977) “Environments of Fire Detectors” – Phase I: Effect of Fire Size, ceiling height and materials. Volumes I and II – Measumerents (NBS-GCR–77-86; NBS-GCR-77-95). Gaitherburg, Md.: National Bureau of Standards

    Google Scholar 

  18. Cooper LY (1981) An experimental study of upper hot layer stratification in full scale multiroom fire scenarios. Paper 81-HT-9, American Society of Mechanical Engineers

  19. Chow, W·K. and Lo, A.C·W. 1995 Scale modeling Studies on Atrium Smoke Movement and the Smoke Filling Process. Journal of Fire Protection Engineering 7(2), pp. 56–64.

    Google Scholar 

  20. Chow, W·K. 2008 Scale Modeling on Natural Smoke Filling in an Atrium. Heat Transfer Engineering 29(1), 76–84.

    Article  Google Scholar 

  21. Quintiere JG, McCaffrey BJ, Kashiwagi T (1978) A scaling study of a corridor subject to a roomfire. Combust Sci Technol 18:1–19

    Article  Google Scholar 

  22. McGrattan KB, Forney GP (2006) Fire dynamics simulator (version 4): user’s manual, NIST Special Publication 1019. National Institute of Standards and Technology (NIST), Gaithersburg

    Google Scholar 

  23. Peacock et al (2005) Consolidated model for fire and smoke transport – CFAST (version 6), NIST Special Publication 1041. National Institute of Standards and Technology (NIST), Gaithersburg

  24. Capote JA, Alvear D, Lázaro M, Espina P (2007) Informe Resumen de la Investigación 8: Estudio del Movimiento de los Humos en caso de Incendio en Grandes Atrios de Estaciones Ferroviarias de Pasajeros mediante Modelado y Simulación Computacional. Servicio de Publicaciones de la Universidad de Cantabria

  25. Capote, J.A., Alvear D., Abreu O. V., Lázaro M., Espina P. 2008 La Influencia de la Temperatura Exterior sobre los Sistemas de Ventilación Natural en Grandes Atrios. Informes de la Construcción 60, 511, 49–57, julio-septiembre

    Google Scholar 

  26. Capote JA, Alvear D, Abreu OV, Lázaro M, Espina P (2007) Análisis de las Estrategias para el Control de los Humos del Incendio en Atrios mediante Modelado y Simulación Computacional, Advanced Research Workshop “Fire Computer Modeling”, Universidad de Cantabria

  27. Capote JA, Alvear D, Abreu OV, Lázaro M, Espina P (2008) Modelado y Simulación Computacional para el Análisis del Control de los Humos del Incendio en Atrios. II Jornadas de Investigación en Construcción Instituto de Ciencias de la Construcción Eduardo Torroja – CSIC. Madrid, 22–24 de Mayo de 2008

  28. GIDAI. Estudio y Elaboración Conjunta de unas Bases de Proyecto Prescriptivas para la Seguridad contra Incendios en Estaciones Ferroviarias de Pasajeros. Ministerio de Fomento. Estudio en desarrollo

  29. Almand K, Koffel WE et al (eds) (2004) National Institute of Standards and Technology American Case Study, Performance Based Design Analysis Seattle Transportation Center, vol 1. Fifth international conference on performance-based codes and fire safety design methods, Luxembourg, 2004

  30. Yasushi, T., Seiji, Y., Daisuke, K., Yuji, H. (2005) Fire Behavior of A Large-Sized Kiosk in Railway Stations. AIJ Journal of Technology and Design 22, 237–242.

    Google Scholar 

  31. Park WH, Kim DH, Chang HC (2006) Numerical predictions of smoke movement in a subway station under ventilation. Proceedings of the ITA-AITES 2006 World Tunnel Congress and 32nd ITA General Assembly, vol 21(3–4), p 304

  32. Thirteenth Meeting of the UJNR Panel of Fire Research and Safety, volume 1. NIST, 1996

  33. Klote JH (1994) Method of predicting smoke movement in atria with application to smoke management. Building and Fire Research Laboratory, National Institute of Standards and Technology

  34. Lázaro M (2008) Influencia de la Discretización Espacial en la Exactitud del Modelado de Fluidodinámica Computacional de Incendios, Tesis Doctoral, Universidad de Cantabria

Download references

Acknowledgements

The authors would like to acknowledge the Ministry of Housing of the Government of Spain, whose support made possible that this research project was developed (VIV/4123/2007, published BOE nº 32 on February 6th, 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Capote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capote, J.A., Alvear, D., Abreu, O.V. et al. Scale Tests of Smoke Filling in Large Atria. Fire Technol 45, 201–220 (2009). https://doi.org/10.1007/s10694-008-0074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-008-0074-4

Keywords

Navigation