Skip to main content

Advertisement

Log in

Exome sequencing reveals three novel candidate predisposition genes for diffuse gastric cancer

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Gastric cancer is the fourth most common cancer worldwide and the second leading cause of cancer mortality. Three hereditary gastric cancer syndromes have been described; hereditary diffuse gastric cancer (HDGC), familial intestinal gastric cancer (FIGC) and gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS). Thirty per cent of HDGC families have heterozygous germline mutations in CDH1, which encodes E-cadherin. A germline truncating mutation in the gene encoding α-E-catenin (CTNNA1) was also recently discovered in a family with HDGC, but no other genes specifically predisposing to gastric cancer have been identified, leaving the majority of cases showing familial aggregation without a known genetic cause. The aim of this study was to find the putative gastric cancer predisposing gene defect in a family with HDGC that had previously been tested negative for mutations in CDH1. In this family, there were six cases of diffuse gastric cancer in two generations. Exome sequencing was applied to two affected family members. The shared variants which were predicted deleterious in silico and could not be found in databases or in a control set of over 4,000 individuals were Sanger sequenced in a third family member. Three candidate variants were identified: p.Glu1313Lys in Insulin receptor (INSR), p.Arg81Pro in F-box protein 24 (FBXO24) and p.Pro1146Leu in DOT1-like histone H3K79 methyltransferase (DOT1L). These variants and adjacent regions were screened for in an additional 26 gastric cancer patients with a confirmed (n = 13) or suspected (n = 13) family history of disease, but no other non-synonymous mutations were identified. This study identifies INSR, FBXO24 and DOT1L as new candidate diffuse gastric cancer susceptibility genes, which should be validated in other populations. Of these genes, INSR is of special interest as insulin signaling was recently shown to affect tumor cell invasion capability by modulating E-cadherin glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, et al. (2013) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer, Lyon. http://globocan.iarc.fr. Accessed on 13 Dec 2013

  2. Zanghieri G, Gregorio CD, Sacchetti C, Fante R, Sassatelli R et al (1990) Familial occurrence of gastric cancer in the 2-year experience of a population-based registry. Cancer 66:2047–2051

    Article  CAS  PubMed  Google Scholar 

  3. La Vecchia C, Negri E, Franceschi S, Gentile A (1992) Family history and the risk of stomach and colorectal cancer. Cancer 70:50–55

    Article  PubMed  Google Scholar 

  4. Palli D, Galli M, Caporaso NE, Cipriani F, Decarli A et al (1994) Family history and risk of gastric cancer in Italy. Cancer Epidemiol Biomarkers Prev 3:15–18

    CAS  PubMed  Google Scholar 

  5. Caldas C, Carneiro F, Lynch HT, Yokota J, Wiesner GL et al (1999) Familial gastric cancer: overview and guidelines for management. J Med Genet 36:873–880

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Shinmura K, Kohno T, Takahashi M, Sasaki A, Ochiai A et al (1999) Familial gastric cancer: clinicopathological characteristics, RER phenotype and germline p53 and E-cadherin mutations. Carcinogenesis 20(6):1127–1131

    Article  CAS  PubMed  Google Scholar 

  7. Worthley DL, Phillips KD, Wayte N, Schrader KA, Healey S et al (2012) Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS): a new autosomal dominant syndrome. Gut 61:774–779

    Article  CAS  PubMed  Google Scholar 

  8. Vasen HFA, Wijnen JT, Menko FH, Kleibeuker JH, Taal BG et al (1996) Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110:1020–1027

    Article  CAS  PubMed  Google Scholar 

  9. Aarnio M, Salovaara R, Aaltonen LA, Mecklin JP, Järvinen HJ (1997) Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int J Cancer 74:551–555

    Article  CAS  PubMed  Google Scholar 

  10. Lindor NM, Greene MH (1998) The concise handbook of family cancer syndromes. Mayo Familial Cancer Program. J Natl Cancer Inst 90:1039–1071

    Article  CAS  PubMed  Google Scholar 

  11. Varley JM, McGown G, Thorncroft M, Tricker KJ, Teare MD et al (1995) An extended Li-Fraumeni kindred with gastric carcinoma and a codon 175 mutation of TP53. J Med Genet 32:942–945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lauren P (1965) The two histological main types of gastric carcinoma, an attempt at a histoclinical classification. Acta Pathol Microbiol Scand 64:31–49

    CAS  PubMed  Google Scholar 

  13. Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) (2010) WHO classification of tumours of the digestive system, 4th edn. IARC, Lyon

    Google Scholar 

  14. Kaneko S, Yoshimura T (2001) Time trend analysis of gastric cancer incidence in japan by histological types, 1975–1989. Br J Cancer 84:400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Parsonnet J, Vandersteen D, Goates J, Sibley RK, Pritikin J et al (1991) Helicobacter pylori infection in intestinal-and diffuse-type gastric adenocarcinomas. J Natl Cancer Inst 83:640–643

    Article  CAS  PubMed  Google Scholar 

  16. Machado JC, Soares P, Carneiro F, Rocha A, Beck S et al (1999) E-cadherin gene mutations provide a genetic basis for the phenotypic divergence of mixed gastric carcinomas. Lab Invest 79:459–465

    CAS  PubMed  Google Scholar 

  17. Fitzgerald RC, Hardwick R, Huntsman D, Carneiro F, Guilford P et al (2010) Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet 47:436–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Pharoah PD, Guilford P, Caldas C (2001) Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121:1348–1353

    Article  CAS  PubMed  Google Scholar 

  19. Majewski IJ, Kluijt I, Cats A, Scerri TS, de Jong D et al (2013) An α-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer. J Pathol 229(4):621–629. doi:10.1002/path.4152

    Article  CAS  PubMed  Google Scholar 

  20. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. González-Pérez A, López-Bigas N (2011) Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet 88:440–449

    Article  PubMed Central  PubMed  Google Scholar 

  22. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Chen Y, Cunningham F, Rios D, McLaren WM, Smith J et al (2010) Ensembl variation resources. BMC Genom 11:293

    Article  Google Scholar 

  24. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  CAS  PubMed  Google Scholar 

  25. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R et al (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 19:3278–3288

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R et al (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 277:39684–39695

    Article  CAS  PubMed  Google Scholar 

  28. Van Horn DJ, Myers MG Jr, Backer JM (1994) Direct activation of the phosphatidylinositol 3′-kinase by the insulin receptor. J Biol Chem 269:29–32

    PubMed  Google Scholar 

  29. Pollak M (2008) Insulin and insulin-like growth factor signaling in neoplasia. Nat Rev Cancer 8:915–928

    Article  CAS  PubMed  Google Scholar 

  30. Denley A, Wallace JC, Cosgrove LJ, Forbes BE (2003) The insulin receptor isoform exon 11- (IR-A) in cancer and other diseases: a review. Horm Metab Res 35:778–785

    Article  CAS  PubMed  Google Scholar 

  31. Yingmei W, Shaofang H, Wenyan T, Zhang L, Zhao J et al (2012) Mitogenic and anti-apoptotic effects of insulin in endometrial cancer are phosphatidylinositol 3-kinase/Akt dependent. Gynecol Oncol 125:734–741

    Article  Google Scholar 

  32. de-Freitas-Junior JCM, Carvalho S, Dias AM, Oliveira P, Cabral J et al (2013) Insulin/IGF-I signaling pathways enhances tumor cell invasion through bisecting GlcNac N-glycans modulation. An interplay with E-cadherin. PLoS One 8(11):e81579

    Article  PubMed Central  PubMed  Google Scholar 

  33. Pinho SS, Figureiredo J, Cabral J (2013) E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim Biophys Acta 1830:2690–2700

    Article  CAS  PubMed  Google Scholar 

  34. Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M et al (1999) Identification of a family of human F-box proteins. Curr Biol 9:1177–1179

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Liu P, Inuzuka H, Wei W (2014) Roles of F-box proteins in cancer. Nat Rev Cancer 14:233–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE et al (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150:613–632

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P et al (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058

    Article  CAS  PubMed  Google Scholar 

  38. Lacoste N, Utley RT, Hunter JM, Poirier GG, Côte J (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277:30421–30424

    Article  CAS  PubMed  Google Scholar 

  39. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S et al (2007) A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110:4445–4454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16:92–106

    Article  CAS  PubMed  Google Scholar 

  41. Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC et al (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 4:574–589

    Article  Google Scholar 

  42. Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P et al (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411

    Article  CAS  PubMed  Google Scholar 

  43. Wysocki R, Javaheri A, Allard S, Sha F, Côté J et al (2005) Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25:8430–8443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y et al (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121:167–178 (erratum in: Cell 121:809)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to all the patients who participated in the study. Sini Nieminen, Marjo Rajalaakso, Alison Ollikainen, Iina Vuoristo and Inga-Lill Svedberg are thanked for excellent technical assistance. We acknowledge Finnish Institute of Molecular Medicine (FIMM) Genome and Technology Centre (Helsinki, Finland) for capillary sequencing and CSC–IT Center for Science Ltd (Espoo, Finland) for the allocation of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Vahteristo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donner, I., Kiviluoto, T., Ristimäki, A. et al. Exome sequencing reveals three novel candidate predisposition genes for diffuse gastric cancer. Familial Cancer 14, 241–246 (2015). https://doi.org/10.1007/s10689-015-9778-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-015-9778-z

Keywords

Navigation