Skip to main content
Log in

Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Missense mutations of the DNA mismatch repair gene MLH1 are found in a significant fraction of patients with Lynch syndrome (hereditary nonpolyposis colorectal cancer, HNPCC) and their pathogenicity often remains unclear. We report here all 88 MLH1 missense variants identified in families from the German HNPCC consortium with clinical details of these patients/families. We investigated 23 MLH1 missense variants by two functional in vivo assays in yeast; seven map to the ATPase and 16 to the protein interaction domain. In the yeast-2-hybrid (Y2H) assay three variants in the ATPase and twelve variants in the interaction domain showed no or a reduced interaction with PMS2; seven showed a normal and one a significantly higher interaction. Using the Lys2A 14 reporter system to study the dominant negative mutator effect (DNE), 16 variants showed no or a low mutator effect, suggesting that these are nonfunctional, three were intermediate and four wild type in this assay. The DNE and Y2H results were concordant for all variants in the interaction domain, whereas slightly divergent results were obtained for variants in the ATPase domain. Analysis of the stability of the missense proteins in yeast and human embryonic kidney cells (293T) revealed a very low expression for seven of the variants in yeast and for nine in human cells. In total 15 variants were classified as deleterious, five were classified as variants of unclassified significance (VUS) and three were basically normal in the functional assays, P603R, K618R, Q689R, suggesting that these are neutral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guarne A, Ramon-Maiques S, Wolff EM et al (2004) Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 23(21):4134–4145

    Article  PubMed  CAS  Google Scholar 

  2. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  PubMed  CAS  Google Scholar 

  3. Matson SW, Robertson AB (2006) The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 34(15):4089–4097

    Article  PubMed  CAS  Google Scholar 

  4. Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281(41):30305–30309

    Article  PubMed  CAS  Google Scholar 

  5. Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274(10):6336–6341

    Article  PubMed  CAS  Google Scholar 

  6. Kondo E, Suzuki H, Horii A, Fukushige S (2003) A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res 63(12):3302–3308

    PubMed  CAS  Google Scholar 

  7. Nystrom-Lahti M, Perrera C, Raschle M et al (2002) Functional analysis of MLH1 mutations linked to hereditary nonpolyposis colon cancer. Genes Chromosomes Cancer 33(2):160–167

    Article  PubMed  CAS  Google Scholar 

  8. Fishel R (2001) The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res 61(20):7369–7374

    PubMed  CAS  Google Scholar 

  9. Harfe BD, Jinks-Robertson S (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34:359–399

    Article  PubMed  CAS  Google Scholar 

  10. Jiricny J (2000) Mediating mismatch repair. Nat Genet 24(1):6–8

    Article  PubMed  CAS  Google Scholar 

  11. Plotz G, Welsch C, Giron-Monzon L et al (2006) Mutations in the MutSalpha interaction interface of MLH1 can abolish DNA mismatch repair. Nucleic Acids Res 34(22):6574–6586

    Article  PubMed  CAS  Google Scholar 

  12. Fedier A, Fink D (2004) Mutations in DNA mismatch repair genes: implications for DNA damage signaling and drug sensitivity (review). Int J Oncol 24(4):1039–1047

    PubMed  CAS  Google Scholar 

  13. de la Chapelle A (2004) Genetic predisposition to colorectal cancer. Nat Rev Cancer 4(10):769–780

    Article  Google Scholar 

  14. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246

    Article  PubMed  CAS  Google Scholar 

  15. Shcherbakova PV, Kunkel TA (1999) Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol 19(4):3177–3183

    PubMed  CAS  Google Scholar 

  16. Shimodaira H, Filosi N, Shibata H et al (1998) Functional analysis of human MLH1 mutations in Saccharomyces cerevisiae. Nat Genet 19(4):384–389

    Article  PubMed  CAS  Google Scholar 

  17. Trojan J, Zeuzem S, Randolph A et al (2002) Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology 122(1):211–219

    Article  PubMed  CAS  Google Scholar 

  18. Raevaara TE, Korhonen MK, Lohi H et al (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129(2):537–549

    PubMed  CAS  Google Scholar 

  19. Raevaara TE, Gerdes AM, Lonnqvist KE et al (2004) HNPCC mutation MLH1 P648S makes the functional protein unstable, and homozygosity predisposes to mild neurofibromatosis type 1. Genes Chromosom Cancer 40(3):261–265

    Article  PubMed  CAS  Google Scholar 

  20. Stone EA, Sidow A (2005) Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 15(7):978–986

    Article  PubMed  CAS  Google Scholar 

  21. Kosinski J, Hinrichsen I, Bujnicki JM, Friedhoff P, Plotz G (2010) Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair. Hum Mutat 31(8):975–982

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67(10):4595–4604

    Article  PubMed  CAS  Google Scholar 

  23. Kondo E, Horii A, Fukushige S (1999) The human PMS2L proteins do not interact with hMLH1, a major DNA mismatch repair protein. J Biochem 125(4):818–825

    PubMed  CAS  Google Scholar 

  24. Clark AB, Cook ME, Tran HT, Gordenin DA, Resnick MA, Kunkel TA (1999) Functional analysis of human MutSalpha and MutSbeta complexes in yeast. Nucleic Acids Res 27(3):736–742

    Article  PubMed  CAS  Google Scholar 

  25. Mielke C, Tummler M, Schubeler D, von Hoegen I, Hauser H (2000) Stabilized, long-term expression of heterodimeric proteins from tricistronic mRNA. Gene 254(1–2):1–8

    Article  PubMed  CAS  Google Scholar 

  26. Agatep R, Kirkpatrick RD, Parchaliuk DL, Woods RA, Gietz RD (1998) Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAc/ss-DNA/PEG) protocol. Technical Tips Online (http://tto.trends.com)

  27. Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA (1997) Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17(5):2859–2865

    PubMed  CAS  Google Scholar 

  28. Lea DC (1949) The distribution of the numbers of mutants in bacterial populations. J Genet 49:264–285

    Article  Google Scholar 

  29. Kondo E, Horii A, Fukushige S (2001) The interacting domains of three MutL heterodimers in man: hMLH1 interacts with 36 homologous amino acid residues within hMLH3, hPMS1 and hPMS2. Nucleic Acids Res 29(8):1695–1702

    Article  PubMed  CAS  Google Scholar 

  30. Wanat JJ, Singh N, Alani E (2007) The effect of genetic background on the function of Saccharomyces cerevisiae mlh1 alleles that correspond to HNPCC missense mutations. Hum Mol Genet 16(4):445–452

    Article  PubMed  CAS  Google Scholar 

  31. Chao EC, Velasquez JL, Witherspoon MS et al (2008) Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum Mutat 29(6):852–860

    Article  PubMed  CAS  Google Scholar 

  32. Muller-Koch Y, Kopp R, Lohse P et al (2001) Sixteen rare sequence variants of the hMLH1 and hMSH2 genes found in a cohort of 254 suspected HNPCC (hereditary non-polyposis colorectal cancer) patients: mutations or polymorphisms? Eur J Med Res 6(11):473–482

    PubMed  CAS  Google Scholar 

  33. Pang Q, Prolla TA, Liskay RM (1997) Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol Cell Biol 17(8):4465–4473

    PubMed  CAS  Google Scholar 

  34. Prolla TA, Pang Q, Alani E, Kolodner RD, Liskay RM (1994) MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science 265(5175):1091–1093

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the German Cancer Aid (Deutsche Krebshilfe e.V. Bonn, project nos 70-2397, 108132 and 108628) and a multicentre grant from the German Cancer Aid (project nos. 70-2371, 106244 and 107318).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Brigitte Royer-Pokora.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 324 kb)

Supplementary material 2 (DOC 209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardt, K., Heick, S.B., Betz, B. et al. Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Familial Cancer 10, 273–284 (2011). https://doi.org/10.1007/s10689-011-9431-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-011-9431-4

Keywords

Navigation