Skip to main content

Advertisement

Log in

Genetic epidemiological analysis reveals a multi-gene additive model for gastric cancer

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

A genetic epidemiologic analysis of gastric cancer in the Chinese Han population was conducted for 64 pedigrees (902 individuals) with gastric cancer and controls obtained from the population after a census was carried out in August 2007. The heritability of gastric cancer was performed using the Falconer method and the complex segregation analysis was performed using the Statistical Analysis for Genetic Epidemiology (S.A.G.E.) SEGREG program. The heritability of gastric cancer in first- and second-degree relatives was 54.75% (95% CI, 48.01–61.49%) and 44.97% (95% CI, 33.12–56.82%), respectively. The estimated segregation ratio of gastric cancer was 0.039 (95% CI, 0.017–0.061). The complex segregation analysis showed that the Mendelian inheritance of additive model provided the best fit to the data (AIC = 170.58, P > 0.05). Therefore, polygenetic or multi-factorial additive inheritance is involved in the genetic predisposition for the development of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

S.A.G.E:

Statistical analysis for genetic epidemiology

OR:

Odds ratio

95%CI:

95% confidence intervals

SD:

Standard deviation

H. pylori:

Helicobacter pylori

h 2 :

Heritability

P LM :

Segregation ratio

LnL:

Natural log likelihood

AIC:

Akaike’s information criterion

References

  1. Sun XB, Hu ML, Quan PL (2006) An analysis of mortality trend with stomach cancer in henan, 1984–2003. Bull Chin Cancer 15:291–293

    CAS  Google Scholar 

  2. Foschi R, Lucenteforte E, Bosetti C et al (2008) Family history of cancer and stomach cancer risk. Int J Cancer 123:1429–1432

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen TV, Janssen MJ, van Oijen MG et al (2010) Genetic polymorphisms in GSTA1, GSTP1, GSTT1, and GSTM1 and gastric cancer risk in a Vietnamese population. Oncol Res 18(7):349–355

    Article  PubMed  Google Scholar 

  4. Zhou XF, He YL, Song W et al (2009) Comparison of patients by family history with gastric and non-gastric cancer. World J Gastroenterol 21:264450

    Google Scholar 

  5. Kanamori M, Schnell AH, Inoue M et al (2001) Segregation analysis of gastric cancer in a Japanese population. Int J Human Genetic 1:263–270

    Google Scholar 

  6. SAGE (1994). Statistical analysis for genetic epidemiology. Rel. 2.2. Computer program package available from the Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH

  7. Tarone RE (1979) Testing the goodness of fit of the binomial distribution. Biometrika 66:585–590

    Article  Google Scholar 

  8. Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman Press, New York

    Google Scholar 

  9. Li CC, Mantel N (1968) A simple method of estimating the segregation ratio under complete ascertainment. Am J Hum Genet 20:61–81

    CAS  PubMed  Google Scholar 

  10. Bonney GE, Elston RC, Correa P, Tannenbaum SR et al (1987) Genetic etiology of gastric carcinoma: II. Segregation analysis of gastric pH, nitrate, and nitrite. Genet Epidemiol 4:103–114

    Article  CAS  PubMed  Google Scholar 

  11. Akaike H (1974) A new looks at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  12. Kondo T, Toyoshima H, Tsuzuki Y et al (2003) Aggregation of stomach cancer history in parents and offspring in comparison with other sites. Int J Epidemiol 32:579–583

    Article  PubMed  Google Scholar 

  13. Olopade OI, Pichert G (2001) Cancer genetics in oncology practice. Ann Onc 12:895–908

    Article  CAS  Google Scholar 

  14. Milne AN, Sitarz R, Carvalho R et al (2007) Early onset gastric cancer: on the road to unraveling gastric carcinogenesis. Curr Mol Med 7:15–28

    Article  CAS  PubMed  Google Scholar 

  15. Eto K, Ohyama S, Yamaguchi T, Wada T et al (2006) Familial clustering in subgroups of gastric cancer stratified by histology, age group and location. Eur J Surg Oncol 32:743–748

    Article  CAS  PubMed  Google Scholar 

  16. Hemminki K, Sundquist J, Ji J (2007) Familial risk for gastric carcinoma: an updated study from Sweden. Br J Cancer 96:1272–1277

    Article  CAS  PubMed  Google Scholar 

  17. Milne AN, Carvalho R, Morsink FM et al (2006) Early-onset gastric cancers have a different molecular expression profile than conventional gastric cancers. Mod Pathol 19:564–572

    Article  CAS  PubMed  Google Scholar 

  18. Emery AEH (1986) Methodology in medical genetics. Churchill Livingston Press, London

    Google Scholar 

  19. Lee JH, Barral S, Cheng R et al (2008) Age-at-onset linkage analysis in caribbean hispanics with familial late-onset Alzheimer’s disease. Neurogenetics 9(1):51–60

    Article  PubMed  Google Scholar 

  20. Dong LM, Potter JD, White E et al (2008) Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299:2423–2436

    Article  CAS  PubMed  Google Scholar 

  21. Schneider BG, Camargo MC, Ryckman KK et al (2008) Cytokine polymorphisms and gastric cancer risk: an evolving view. Cancer Biol Ther 7:157–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China [No.30972547]. Some results of this paper were obtained by using the program package S.A.G.E. We thank all the families for their participation in the study; thank the staff of Xin’an County Centers for Disease Control and Prevention (CDC), Henan Province, to support our epidemiological study on the scene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaijuan Wang.

Appendix

Appendix

The formulae of segregation ratio (P LM ) estimation:

$$ \begin{gathered} P_{LM} = {{\left( {R - J} \right)} \mathord{\left/ {\vphantom {{\left( {R - J} \right)} {\left( {T - J} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {T - J} \right)}};\,{\kern 1pt} S_{P}^{2} = {{\left( {R - J} \right)\left( {T - R} \right)} \mathord{\left/ {\vphantom {{\left( {R - J} \right)\left( {T - R} \right)} {\left( {T - J} \right)^{3} }}} \right. \kern-\nulldelimiterspace} {\left( {T - J} \right)^{3} }};{\kern 1pt} {\kern 1pt} \,SE_{P} = \left( {S_{p}^{2} } \right)^{1/2} ; \hfill \\ P_{LM} 95\% {\kern 1pt} \,CI: \, P_{LM} \pm 1.96SE_{P} \circ \hfill \\ \end{gathered} $$

Here, P LM stands for the segregation ratio, R stands for the total number of affected individuals, J stands for the total number of families with only one affected offspring, and T stands for the total number of affected and unaffected offspring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Zhang, X., Wang, P. et al. Genetic epidemiological analysis reveals a multi-gene additive model for gastric cancer. Familial Cancer 10, 119–125 (2011). https://doi.org/10.1007/s10689-010-9391-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-010-9391-0

Keywords

Navigation