Skip to main content

Advertisement

Log in

MLPA mutation detection in Argentine HNPCC and FAP families

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Colorectal cancer (CC) is the secondary cause of death in the Western countries of which approximately 15% are considered to be hereditary. The hereditary forms are Familial Adenomatous Polyposis (FAP) and Hereditary Non Polyposis Colorectal Cancer (HNPCC) which is the commonest form. The detection of mutations in the MMR and apc related genes, allows the development of health prevention strategies. Different molecular diagnostic strategies are available for the detection of mutations in these genes, i.e. DGGE, SSCP and direct sequencing. However, deletions and duplications of one or more consecutive exons, which account for around 50% of the total alterations in MMR genes, cannot be detected by PCR based methodologies due to the non quantitative nature of these techniques. The aim of our work has been the standardization of a methodology, called Multiplex Ligation-Dependent Probe Amplification, which allows the detection of genomic deletions and duplications as primary analysis in HNPCC and FAP patients in Argentina. In this case, we inform that the application of MLPA allowed the detection of a missence mutation, without the need for direct sequencing of the complete genes involved. A PCR/RFLP strategy was afterwards designed to detect the C<T change on codon 718 of mlh1 gene in members of the family. For a developing country like Argentina, which has limited resources for genetic diagnosis, this MLPA application has avoided an unaffordable cost as the complete sequencing of all the involved genes. The application of MLPA in our country contributes to improvement in the diagnosis of hereditary CC and allows the development of preventive health interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tops C (1996) Genetics changes during colorectal oncogenesis. In: Presymptomatic DNA diagnosis of familial adenomatous polyposis. PhD Thesis, Leiden

  2. Bishop JM (1987) The molecular genetics of cancer. Science 235:305–311. doi:10.1126/science.3541204

    Article  PubMed  CAS  Google Scholar 

  3. Knudson AG (1985) Hereditary cancer, oncogenes and antioncogenes. Cancer Res 45:1437–1443

    PubMed  CAS  Google Scholar 

  4. Grady WM (2003) Genetic testing for high-risk colon cancer patients. Gastroenterology 124:1574–1794. doi:10.1016/S0016-5085(03)00376-7

    Article  PubMed  CAS  Google Scholar 

  5. Rustgi AK (2007) The genetics of hereditary colon cancer. Genes Dev 21:2525–2538. doi: 10.1101/gad.1593107

    Google Scholar 

  6. Aarnio M, Sankila R, Pukkala E et al (1999) Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81:214–218. doi: 10.1002/(SICI)1097-0215(19990412)81:2≤214::AID-IJC8≥3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  7. Vasen HF et al (1991) The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425. doi:10.1007/BF02053699

    Article  PubMed  CAS  Google Scholar 

  8. Lynch HT, Rubinstein WS, Locker GY (2004) Cancer in Jews: introduction and overview. Fam Cancer 3:177–192. doi:10.1007/s10689-004-9549-8

    Article  PubMed  Google Scholar 

  9. Shimodaira H, Filosi N, Shibata H et al (1998) Functional analysis of human MLH1 mutations in Saccharomyces cerevisiae. Nat Genet 19:384–389. doi:10.1038/1277

    Article  PubMed  CAS  Google Scholar 

  10. Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281:30305–30309. doi:10.1074/jbc.R600022200

    Article  PubMed  CAS  Google Scholar 

  11. Vogeslstein B, Kinzler K (2002) Hereditary nonpolyposis colorectal cancer. The genetic basis of human cancer. McGraw-Hill, New York

    Google Scholar 

  12. Bellacosa A (2001) Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 8:1076–1092. doi:10.1038/sj.cdd.4400948

    Google Scholar 

  13. Fodde R, Van der Luijt R, Wijnen J et al (1992) Eight novel inactivating germ line mutations at the APC gene identified by denaturing gradient gel electrophoresis. Genomics 13:1162–1168. doi:10.1016/0888-7543(92)90032-N

    Article  PubMed  CAS  Google Scholar 

  14. Spaepen M, Vankeirsbilck B, Van Opstal S et al (2006) Germline mutations of the hMLH1 and hMSH2 mismatch repair genes in Belgian hereditary nonpolyposis colon cancer (HNPCC) patients. Fam Cancer 5:179–189. doi:10.1007/s10689-005-5958-6

    Article  PubMed  CAS  Google Scholar 

  15. Bellolio RF, Alvarez VK, De la Fuente LM et al (2006) Hereditary colorectal cancer: molecular analysis of APC and MLH1 genes. Rev Med Chil 134:841–848

    Article  Google Scholar 

  16. Sellner LN, Taylor GR (2004) MLPA and MAPH: new techniques for detection of gene deletions. Hum Mutat 23:413–419. doi:10.1002/humu.20035

    Article  PubMed  CAS  Google Scholar 

  17. Gille JJ, Hogervorst FB, Pals G et al (2002) Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. Br J Cancer 87:892–897. doi:10.1038/sj.bjc.6600565

    Article  PubMed  CAS  Google Scholar 

  18. Michils G, Tejpar S, Thoelen R et al (2005) Large deletions of the APC gene in 15% of mutation-negative patients with classical polyposis (FAP): a Belgian study. Hum Mutat 25:125–134. doi:10.1002/humu.20122

    Article  PubMed  CAS  Google Scholar 

  19. Schouten JP, McElgunn CJ, Waaijer R et al (2002) Relative quantification of 40 nucleic acid sequences by multiplexligation-dependent probe amplification. Nucleic Acids Res 30:57. doi:10.1093/nar/gnf056

    Google Scholar 

  20. Marzese DM, Mampel A, Gomez LC et al (2008) Detection of deletions and duplications in the Duchenne muscular dystrophy gene by the molecular method MLPA in the first Argentine affected families. Genet Mol Res 7:223–233

    Article  PubMed  CAS  Google Scholar 

  21. Darai E, Kost-Alimova M, Kiss H et al (2005) Evolutionarily plastic regions at human 3p21.3 coincide with tumor breakpoints identified by the elimination test. Genomics 86:1–12 doi:10.1016/j.ygeno.2005.04.003

    Google Scholar 

  22. Weber (2001) Am J Hum Genet 69:416

    Google Scholar 

  23. Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274:6336–6341. doi:10.1074/jbc.274.10.6336

    Article  PubMed  CAS  Google Scholar 

  24. Wu X, Platt J, Cascalho M (2003) Dimerization of MLH1 and PMS2 limits nuclear localization of MutLa. Mol Cell Biol 9:3320–3328. doi:10.1128/MCB.23.9.3320-3328.2003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Gerard Pals and Dr Jan Schouten of the Medical Center of the Free University of Amsterdam, (The Netherlands), for their training in MLPA. We also want to thank KJ for the revision of the English language in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Roqué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez, L.C., Marzese, D.M., Adi, J. et al. MLPA mutation detection in Argentine HNPCC and FAP families. Familial Cancer 8, 67–73 (2009). https://doi.org/10.1007/s10689-008-9200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-008-9200-1

Keywords

Navigation