Skip to main content

Advertisement

Log in

Working through a diagnostic challenge: colonic polyposis, Amsterdam criteria, and a mismatch repair mutation

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

The two most common causes of hereditary colorectal cancer are Lynch syndrome and familial adenomatous polyposis (FAP). The phenotype of Lynch syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is differentiated in part from FAP by the lack of profuse colonic polyposis. Here we describe a proband who presented with greater than 50 adenomatous colonic polyps prior to developing cancer of the colon and urinary bladder, and a family history that fulfills the Amsterdam criteria. Germline analyses of APC and MYH in the proband did not reveal any mutations. Comprehensive analysis of the mismatch repair genes associated with Lynch syndrome revealed a germline hMSH6 missense mutation 2314C>T (arg772trp) and normal sequencing for hMSH2 and hMLH1. We outline evidence supporting the pathogenicity of the identified hMSH6 mutation (arg772trp) and suggest possible etiologies for the unexplained colonic adenomatous polyposis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

FAP:

Familial adenomatous polyposis

HNPCC:

Hereditary nonpolyposis colorectal cancer

AFAP:

Attenuated familial adenomatous polyposis

MAP:

MYH-associated polyposis

MMR:

Mismatch repair

MSI:

Microsatellite instability

MSI-L:

Low level of MSI

IHC:

Immunohistochemistry

CLIA:

Clinical Laboratory Improvement Amendments

References

  1. Beck NE, Tomlinson IP, Homfray TF et al (1997) Frequency of germline hereditary non-polyposis colorectal cancer gene mutations in patients with multiple or early onset colorectal adenomas. Gut 41:235–238

    Article  PubMed  CAS  Google Scholar 

  2. De Jong AE, Morreau H, Van Puijenbroek M et al (2004) The role of mismatch repair gene defects in the development of adenomas in patients with HNPCC. Gastroenterology 126:42–48

    Article  PubMed  CAS  Google Scholar 

  3. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10:721–733

    Article  PubMed  CAS  Google Scholar 

  4. Knudsen AL, Bisgaard ML, Bulow S (2003) Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer 2:43–55

    Article  PubMed  Google Scholar 

  5. Aretz S, Uhlhaas S, Goergens H et al (2006) MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer 119:807–814

    Article  PubMed  CAS  Google Scholar 

  6. Jo WS, Bandipalliam P, Shannon KM et al (2005) Correlation of polyp number and family history of colon cancer with germline MYH mutations. Clin Gastroenterol Hepatol 3:1022–1028

    Article  PubMed  CAS  Google Scholar 

  7. Cao Y, Pieretti M, Marshall J et al (2002) Challenge in the differentiation between attenuated familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer: case report with review of the literature. Am J Gastroenterol 97:1822–1827

    Article  PubMed  Google Scholar 

  8. Okkels H, Sunde L, Lindorff-Larsen K et al (2006) Polyposis and early cancer in a patient with low penetrant mutations in MSH6 and APC: hereditary colorectal cancer as a polygenic trait. Int J Colorectal Dis 21:847–850

    Article  PubMed  Google Scholar 

  9. Scheenstra R, Rijcken FE, Koornstra JJ et al (2003) Rapidly progressive adenomatous polyposis in a patient with germline mutations in both the APC and MLH1 genes: the worst of two worlds. Gut 52:898–899

    Article  PubMed  CAS  Google Scholar 

  10. Soravia C, DeLozier CD, Dobbie Z et al (2006) Double frameshift mutations in APC and MSH2 in the same individual. Int J Colorectal Dis 21:79–83

    PubMed  Google Scholar 

  11. van Puijenbroek M, Nielsen M, Reinards TH et al (2007) The natural history of a combined defect in MSH6 and MUTYH in a HNPCC family. Fam Cancer 6:43–51

    Article  PubMed  CAS  Google Scholar 

  12. Yuan ZQ, Kasprzak L, Gordon PH et al (1998) I1307K APC and hMLH1 mutations in a non-Jewish family with hereditary non-polyposis colorectal cancer. Clin Genet 54:368–370

    Article  PubMed  CAS  Google Scholar 

  13. Yuan ZQ, Wong N, Foulkes WD et al (1999) A missense mutation in both hMSH2 and APC in an Ashkenazi Jewish HNPCC kindred: implications for clinical screening. J Med Genet 36:790–793

    PubMed  CAS  Google Scholar 

  14. Vasen HF, Mecklin JP, Khan PM et al (1991) The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425

    Article  PubMed  CAS  Google Scholar 

  15. Vasen HF, Watson P, Mecklin JP et al (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456

    Article  PubMed  CAS  Google Scholar 

  16. Goodfellow PJ, Buttin BM, Herzog TJ et al (2003) Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci USA 100:5908–5913

    Article  PubMed  CAS  Google Scholar 

  17. Ohmiya N, Matsumoto S, Yamamoto H et al (2001) Germline and somatic mutations in hMSH6 and hMSH3 in gastrointestinal cancers of the microsatellite mutator phenotype. Gene 272:301–313

    Article  PubMed  CAS  Google Scholar 

  18. Plaschke J, Kruger S, Dietmaier W et al (2004) Eight novel MSH6 germline mutations in patients with familial and nonfamilial colorectal cancer selected by loss of protein expression in tumor tissue. Hum Mutat 23:285

    Article  PubMed  Google Scholar 

  19. Wu TH, Marinus MG (1994) Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol 176:5393–5400

    PubMed  CAS  Google Scholar 

  20. Plaschke J, Kruger S, Pistorius S et al (2002) Involvement of hMSH6 in the development of hereditary and sporadic colorectal cancer revealed by immunostaining is based on germline mutations, but rarely on somatic inactivation. Int J Cancer 97:643–648

    Article  PubMed  CAS  Google Scholar 

  21. Niessen RC, Sijmons RH, Ou J et al (2006) MUTYH and the mismatch repair system: partners in crime? Hum Genet 119:206–211

    Article  PubMed  CAS  Google Scholar 

  22. Gu Y, Parker A, Wilson TM et al (2002) Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem 277:11135–11142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The family’s participation in the study is gratefully acknowledged. This research was supported in part by a General Clinical Research Center grant from NIH (M01 RR00043) awarded to the City of Hope National Medical Center, Duarte, California, and by the National Cancer Institute, Grant No. R25 CA85771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kory W. Jasperson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasperson, K.W., Blazer, K.R., Lowstuter, K. et al. Working through a diagnostic challenge: colonic polyposis, Amsterdam criteria, and a mismatch repair mutation. Familial Cancer 7, 281–285 (2008). https://doi.org/10.1007/s10689-007-9179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-007-9179-z

Keywords

Navigation