Skip to main content
Log in

Commuting difference operators and the combinatorial Gale transform

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We develop the spectral theory of n-periodic strictly triangular difference operators L = T -k-1 + ∑ k j=1 a j i Tj and the spectral theory of the “superperiodic” operators for which all solutions of the equation (L + 1)ψ = 0 are (anti)periodic. We show that, for a superperiodic operator L of order k+1, there exists a unique superperiodic operator L of order n-k-1 which commutes with L and show that the duality LL coincides, up to a certain involution, with the combinatorial Gale transform recently introduced in [21].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Assem, C. Reutenauer, and D. Smith, “Friezes,” Adv. Math., 225:6 (2010), 3134–3165.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Bergeron and C. Reutenauer, “SLk -tilings of the plane,” Illinois J. Math., 54:1 (2010), 263–300.

    MATH  MathSciNet  Google Scholar 

  3. J. H. Conway and H. S. M. Coxeter, “Triangulated polygons and frieze patterns,” Math. Gaz., 57:400 (1973), 87–94.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. S. M. Coxeter, “Frieze patterns,” Acta Arith., 18 (1971), 297–310.

    MATH  MathSciNet  Google Scholar 

  5. D. Eisenbud and S. Popescu, “The projective geometry of Gale transform,” J. Algebra, 230:1 (2000), 127–173.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Fock and A. Marshakov, Loop Groups, Clusters, Dimers and Integrable Systems, http://arxiv.org/abs/1401.1606.

  7. D. Gale, “Neighboring vertices on a convex polyhedron,” in: Linear Inequalities and Related Systems, Annals of Math. Studies, vol. 38, Princeton University Press, Princeton, NJ, 1956, 255–263.

    MATH  MathSciNet  Google Scholar 

  8. C. F. Gauss, Pentagramma Mirificum, in: Werke, Bd. III, 481–490; Bd. VIII, 106–111.

  9. I. M. Gelfand and R. D. MacPherson, “Geometry in Grassmannians and generalization of the dilogarithm,” Adv. in Math., 44:3 (1982), 279–312.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Gekhtman, M. Shapiro, S. Tabachnikov, and A. Vainshtein, “Higher pentagram maps, weighted directed networks, and cluster dynamics,” Electron. Res. Announc. Math. Sci., 19 (2012), 1–17.

    MATH  MathSciNet  Google Scholar 

  11. M. Kapranov, “Chow quotients of Grassmannians, I,” in: “I. M. Gelfand Seminar”, Advances in Soviet Math., vol. 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110.

    MathSciNet  Google Scholar 

  12. B. Khesin and F. Soloviev, “Integrability of higher pentargam maps,” Math. Ann., 357:3 (2013), 1005–1047.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Khesin and F. Soloviev, The Geometry of Dented Pentagram Maps, http://arxiv.org/ abs/1308.5363.

  14. I. M. Krichever, “Integration of non-linear equations by methods of algebraic geometry,” Funkts. Anal. Prilozhen., 11:1 (1977), 15–31

    MATH  MathSciNet  Google Scholar 

  15. I. M. Krichever, English transl.: Functional Anal. Appl., 11:1 (1977), 12–26.

    Article  MATH  Google Scholar 

  16. I. Krichever, “Algebraic curves and non-linear difference equation,” Uspekhi Mat. Nauk, 33:4 (1978), 215–216

    MATH  MathSciNet  Google Scholar 

  17. I. Krichever, English transl.: Russian Math. Surveys, 33:4 (1979), 255–256.

    Article  Google Scholar 

  18. I. Krichever, “Nonlinear equations and elliptic curves,” in: Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, t. 23, vol. 23, VINITI, Moskva, 1983, 79–139.

    MathSciNet  Google Scholar 

  19. I. Krichever and S. Novikov, “Two-dimensional Toda lattice, commuting difference operators and holomorphic vector bundles,” Uspekhi Mat. Nauk, 58:3 (2003), 51–88

    Article  MathSciNet  Google Scholar 

  20. I. Krichever and S. Novikov, English transl.: Russian Math. Surveys, 58:3 (2003), 475–510.

    Article  MathSciNet  Google Scholar 

  21. G. M. Beffa, “On integrable generalizations of the pentagram map,” Int. Math. Res. Not., No. 12 (2015), 3669–3693; http://arxiv.org/abs/1303.4295.

    Google Scholar 

  22. S. Morier-Genoud, “Arithmetics of 2-friezes,” J. Algebraic Combin., 36:4 (2012), 515–539.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, “2-Frieze patterns and the cluster structure of the space of polygons,” Ann. Inst. Fourier, 62:3 (2012), 937–987.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Morier-Genoud, V. Ovsienko, R. E. Schwartz, and S. Tabachnikov, “Linear difference equations, frieze patterns and combinatorial Gale transform,” Forum Math. Sigma, 2 (2014), e22; http://arxiv.org/abs/1309.3880.

    Article  MathSciNet  Google Scholar 

  25. S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, SL 2(Z)-Tiling of the Torus, Coxeter–Conway Friezes and Farey Triangulations, http://arxiv.org/abs/1402.5536.

  26. D. Mumford, “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related nonlinear equations,” in: Proc. Int. Symp. Algebraic Geometry (Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 115–153.

    Google Scholar 

  27. V. Ovsienko, R. Schwartz, and S. Tabachnikov, “The pentagram map: A discrete integrable system,” Comm. Math. Phys., 299:2 (2010), 409–446.

    Article  MATH  MathSciNet  Google Scholar 

  28. V. Ovsienko, R. Schwartz, and S. Tabachnikov, “Liouville–Arnold integrability of the pentagram map on closed polygons,” Duke Math. J., 162:12 (2013), 2149–2196.

    Article  MATH  MathSciNet  Google Scholar 

  29. V. Ovsienko and S. Tabachnikov, Coxeter’s Frieze Patterns and Discretization of the Virasoro Orbit, http://arxiv.org/abs/1312.3021.

  30. J. Propp, The Combinatorics of Frieze Patterns and Markoff Numbers, http://arxiv. org/abs/math/0511633.

  31. R. Schwartz, “Discrete monodromy, pentagrams, and the method of condensation,” J. Fixed Point Theory Appl., 3:2 (2008), 379–409.

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Schwartz, “The pentagram map,” Experiment. Math., 1:1 (1992), 71–81.

    MATH  MathSciNet  Google Scholar 

  33. F. Soloviev, “Integrability of the pentagram map,” Duke. Math. J., 162:15 (2013), 2815–2853.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Zabrodin, “Discrete Hirota’s equation in quantum integrable models,” Internat. J. Modern Phys. B, 11:26–27 (1997), 3125–3158.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Krichever.

Additional information

The research was carried out at the RAS Institute for Information Transmission Problems at the expense of a grant from the Russian Science Foundation (project no. 14-50-00150).

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 49, No. 3, pp. 22–40, 2015

Original Russian Text Copyright © by I. M. Krichever

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krichever, I.M. Commuting difference operators and the combinatorial Gale transform. Funct Anal Its Appl 49, 175–188 (2015). https://doi.org/10.1007/s10688-015-0102-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-015-0102-3

Keywords

Navigation