Skip to main content
Log in

Invariant functionals for random matrices

  • Brief Communications
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

A new approach to the study of the Lyapunov exponents of random matrices is presented. It is proved that, under general assumptions, any family of nonnegative matrices possesses a continuous concave positively homogeneous invariant functional (“antinorm”) on ℝ d+ . Moreover, the coefficient corresponding to an invariant antinorm equals the largest Lyapunov exponent. All conditions imposed on the matrices are shown to be essential. As a corollary, a sharp estimate for the asymptotics of the mathematical expectation for logarithms of norms of matrix products and of their spectral radii is derived. New upper and lower bounds for Lyapunov exponents are obtained. This leads to an algorithm for computing Lyapunov exponents. The proofs of the main results are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Furstenberg and H. Kesten, Ann. Math. Statist., 31 (1960), 457–469.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. N. Tutubalin, Teor. Veroyatn. Primenen., 10:1 (1965), 19–32; English transl.: Theory Probab. Appl., 10:1 (1965), 15–27.

    MATH  MathSciNet  Google Scholar 

  3. V. I. Oseledec, Trudy MMO. 19 (1968), 179–210; English transl.: Trans. Moscow Math. Soc., 19 (1968), 197–231.

    MathSciNet  Google Scholar 

  4. E. Le Page, in: Probability Measures on Groups (Oberwolfach, 1981), Lecture Notes in Math., vol. 928, 1982, 258–303.

    Article  MathSciNet  Google Scholar 

  5. W. C. Watkins, Contemp. Math., 50 (1986), 5–29.

    MathSciNet  Google Scholar 

  6. I. Ya. Goldsheid and G. A. Margulis, Uspekhi Mat. Nauk, 44:5 (1989), 13–60; English transl.: Russian Math. Surveys, 44:5 (1989), 11–71.

    MathSciNet  Google Scholar 

  7. E. S. Key, J. Theor. Probab., 3:3 (1990), 477–488.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. Peres, Ann. Inst. H. Poincaré Probab. Statist., 28:1 (1992), 131–148.

    MATH  MathSciNet  Google Scholar 

  9. H. Hennon, Ann. Probab., 25:4 (1997), 1545–1587.

    Article  MathSciNet  Google Scholar 

  10. V. Yu. Protasov, Izv. Ross. Akad. Nauk Ser. Mat., 68:3 (2004), 27–68; English transl.: Russian Acad. Sci. Izv. Math., 68:3 (2004), 567–606.

    MathSciNet  Google Scholar 

  11. N. E. Barabanov, Avtom. Telemekh., 1988, No. 2, 40–46; English transl.: Autom. Remote Contr., 49:2 (1988), 152–157.

    Google Scholar 

  12. V. Yu. Protasov, Linear Algebra Appl., 428:10 (2008), 2339–2356.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Protasov.

Additional information

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 44, No. 3, pp. 84–88, 2010

Original Russian Text Copyright © by V. Yu. Protasov

This work was supported by RFBR grants 08-01-00208 and 10-01-00293, the program for support of young doctors of science (grant MD-2195.2008.1), and the program “Leading Scientific Schools” (grant NSh-3233.2008.1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protasov, V.Y. Invariant functionals for random matrices. Funct Anal Its Appl 44, 230–233 (2010). https://doi.org/10.1007/s10688-010-0031-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-010-0031-0

Key words

Navigation