Skip to main content
Log in

Extremes of Lévy driven mixed MA processes with convolution equivalent distributions

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We investigate the extremal behavior of stationary mixed MA processes \(Y(t)=\int_{\mathbb{R}_+\times\mathbb{R}}f(r,t-s)\,d\,\Lambda(r,s)\) for t ≥ 0, where f is a deterministic function and Λ is an infinitely divisible and independently scattered random measure. Particular examples of mixed MA processes are superpositions of Ornstein-Uhlenbeck processes, applied as stochastic volatility models in Barndorff-Nielsen and Shephard (2001a). We assume that the finite dimensional distributions of Λ are in the class of convolution equivalent tails and in the maximum domain of attraction of the Gumbel distribution. On the one hand, we compute the tail behavior of Y(0) and sup t ∈ [0,1] Y(t). On the other hand, we study the extremes of Y by means of marked point processes based on maxima of Y in random intervals. A complementary result guarantees the convergence of the running maxima of Y to the Gumbel distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barndorff-Nielsen, O.E.: Superposition of Ornstein–Uhlenbeck type processes. Theory Probab. Appl. 45, 175–194 (2001)

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N.: Modelling by Lévy processes for financial econometrics. In: Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds.) Lévy Processes: Theory and Applications, pp. 283–318. Birkhäuser, Boston (2001a)

    Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial economics (with discussion). J. R. Stat. Soc. Ser. B 63, 167–241 (2001b)

    Article  MATH  MathSciNet  Google Scholar 

  • Billingsley, P.: Convergence of Probability and Measures, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  • Braverman, M., Samorodnitsky, G.: Functionals of infinitely divisible stochastic processes with exponential tails. Stoch. Process. Appl. 56, 207–231 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Cline, D.B.H.: Convolution tails, product tails and domains of attraction. Probab. Theory Relat. Fields 72, 529–557 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, vol. I: Elementary Theory and Methods, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  • Davis, R., Resnick, S.: Extremes of moving averages of random variables from the domain of attraction of the double exponential distribution. Stoch. Process. Appl. 30, 41–68 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts, P., Goldie, C.M.: On convolution tails. Stoch. Process. Appl. 13, 263–278 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Fasen, V.: Extremes of Lévy Driven MA Processes with Applications in Finance. Ph.D. thesis, Munich University of Technology (2004)

  • Fasen, V.: Extremes of regularly varying mixed moving average processes. Adv. Appl. Probab. 37, 993–1014 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Fasen, V.: Extremes of subexponential Lévy driven moving average processes. Stoch. Process. Appl. 116, 1066–1087 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Fasen, V., Klüppelberg, C.: Extremes of SupOU processes. In: Benth, F.E., Di Nunno, G., Lindstrom, T., Oksendal, B., Zhang, T. (eds.) Stochastic Analysis and Applications: The Abel Symposium 2005, pp. 340–359. Springer, New York (2007)

    Google Scholar 

  • Fasen, V., Klüppelberg, C., Lindner, A.: Extremal behavior of stochastic volatility models. In: Shiryaev, A.N., Grossinho, M.d.R., Oliviera, P.E., Esquivel, M.L. (eds.) Stochastic Finance. Springer, New York (2006)

    Google Scholar 

  • Goldie, C.M., Resnick, S.: Subexponential distribution tails and point processes. Commun. Stat. Stoch. Models 4, 361–372 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Hsing, T., Teugels, J.L.: Extremal properties of shot noise processes. Adv. Appl. Probab. 21, 513–525 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997)

    MATH  Google Scholar 

  • Kingman, J.F.C.: Poisson Processes. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  • Kwapień, S., Woyczyzński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  • Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)

    MATH  Google Scholar 

  • Pakes, A.G.: Convolution equivalence and infinite divisibility. J. Appl. Probab. 41, 407–424 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 453–487 (1989)

    Article  MathSciNet  Google Scholar 

  • Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, New York (1987)

    MATH  Google Scholar 

  • Rootzén, H.: Extreme value theory for moving average processes. Ann. Probab. 14, 612–652 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Rosinski, J., Samorodnitsky, G.: Distributions of subadditive functionals of sample paths of infinitely divisible processes. Ann. Probab. 21, 996–1014 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  • Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Schoutens, W.: Lévy Processes in Finance. Wiley, Chichester (2003)

    Book  Google Scholar 

  • Urbanik, K., Woyczyński, W.A.: Random integrals and Orlicz spaces. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 15, 161–169 (1967)

    MATH  Google Scholar 

  • Watanabe, T.: Convolution equivalence and distributions of random sums. Probab. Theory Relat. Fields 142, 367–397 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Fasen.

Additional information

Financial support from the Deutsche Forschungsgemeinschaft through a research grant is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasen, V. Extremes of Lévy driven mixed MA processes with convolution equivalent distributions. Extremes 12, 265–296 (2009). https://doi.org/10.1007/s10687-008-0079-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-008-0079-x

Keywords

AMS 2000 Subject Classifications

Navigation