Skip to main content
Log in

Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modelling

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We present a quasi-conjugate Bayes approach for estimating Generalized Pareto Distribution (GPD) parameters, distribution tails and extreme quantiles within the Peaks-Over-Threshold framework. Damsleth conjugate Bayes structure on Gamma distributions is transfered to GPD. Posterior estimates are then computed by Gibbs samplers with Hastings-Metropolis steps. Accurate Bayes credibility intervals are also defined, they provide assessment of the quality of the extreme events estimates. An empirical Bayesian method is used in this work, but the suggested approach could incorporate prior information. It is shown that the obtained quasi-conjugate Bayes estimators compare well with the GPD standard estimators when simulated and real data sets are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacro, J. and Brito, M., “Strong limiting behaviour of a simple tail Pareto-index estimator,” Stat. Dec. 3, 133–143, (1993).

    MathSciNet  Google Scholar 

  • Balkema, A. and de Haan, L., “Residual life time at a great age,” Ann. Probab. 2, 792–804, (1974).

    MATH  Google Scholar 

  • Beirlant, J. and Teugels, J., “Asymptotic normality of Hill's estimator,” in Extreme Value Theory (J. Hüsler and R.D. Reiss, eds), Proceedings of the Oberwolfach Conference, 1987, Springer-Verlag, New York, 1989.

    Google Scholar 

  • Beirlant, J., Dierckx, G., and Guillou, A., Estimation of the Extreme Value Index and Regression on Generalized Quantile Plots, Preprint, Catholic University of Leuven, Catholic University of Leuven, Belgium, 2001.

  • Bottolo, L., Consonni, G., Dellaportas, P., and Lijoi, A., “Bayesian analysis of extreme values by mixture modeling,” Extremes 6, 25–47, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman, L., Stone, C., and Kooperberg, C., “Robust confidence bounds for extreme upper quantiles,” J. Stat. Comput. Simul. 37, 127–149, (1990).

    MathSciNet  MATH  Google Scholar 

  • Caers, J., Beirlant, J., and Vynckier, P., “Bootstrap confidence intervals for tail indices,” Comput. Stat. Data Anal. 26, 259–277, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo, E. and Hadi, A., “Fitting the Generalized Pareto Distribution to data,” J. Am. Stat. Assoc. 92(440), 1609–1620, (1997).

    MathSciNet  MATH  Google Scholar 

  • Coles, S., An Introduction to Statistical Modelling of Extreme Values. Springer series in Statistics, 2001.

  • Coles, S. and Powell, E., “Bayesian methods in extreme value modelling: A review and new developments,” Int. Stat. Rev. 64(1), 119–136, (1996).

    MATH  Google Scholar 

  • Coles, S. and Tawn, J., “A Bayesian analysis of extreme rainfall data,” Appl. Stat. 45(4), 463–478, (1996).

    Google Scholar 

  • Damsleth, E., “Conjugate classes of Gamma distributions,” Scand. J. Stat.: Theory Appl. 2, 80–84, (1975).

    MathSciNet  MATH  Google Scholar 

  • Davison, A. and Smith, R., “Models for exceedances over high thresholds,” J. R. Stat. Soc., B. 52(3), 393–442, (1990).

    MathSciNet  MATH  Google Scholar 

  • Dekkers, A., Einmahl, J.H.J., and de Haan, L., “A moment estimator for the index of an extreme-value distribution,” Ann. Stat. 17(4), 1833–1855, (1989).

    MATH  Google Scholar 

  • Diebolt, J., Guillou, A., and Worms, R., “Asymptotic behaviour of the probability-weighted moments and penultimate approximation,” ESAIM, Probab. Stat. 7, 219–238, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  • Embrechts, P., Klüppelberg, C., and Mikosch, T., Modelling Extremal Events. Springer, 1997.

  • Garrido, M., Modélisation des évènements rares et estimation des quantiles extrêmes, Méthodes de sèlection de modéles puor les queues de distribution. PhD thesis, Université Joseph Fourier de Grenoble (France), 2002.

  • Grimshaw, S., “Computing maximum likelihood estimates for the Generalized Pareto Distribution,” Technometrics 35(2), May, 185–191, (1993).

    MathSciNet  MATH  Google Scholar 

  • Haeusler, E. and Teugels, J., “On asymptotic normality of Hill's estimator for the exponent of regular variation,” Ann. Stat. 13(2), 743–756, (1985).

    MathSciNet  MATH  Google Scholar 

  • Hill, B., “A simple general approach to inference about the tail of a distribution,” Ann. Stat. 3(5), 1163–1174, (1975).

    MATH  Google Scholar 

  • Hosking, J. and Wallis, J., “Parameter and quantile estimation for the Generalized Pareto Distribution,” Technometrics 29(3), August, 339–349, (1987).

    MathSciNet  MATH  Google Scholar 

  • Pickands, J., “Statistical inference using extreme order statistics,” Ann. Stat. 3, 119–131, (1975).

    MathSciNet  MATH  Google Scholar 

  • Reiss, R. and Thomas, M., “A new class of Bayesian estimators in paretian excess-of-loss reinsurance,” Astin J. 29(2), 339–349, (1999).

    MATH  Google Scholar 

  • Reiss, R. and Thomas, M., Statistical Analysis of Extreme Values. Birkhauser Verlag, 2001.

  • Robert, C.P., Discretization and MCMC Convergence Assessment. Lecture Notes in Statistics 135, Springer, 1998.

  • Schnieper, R., “Praktische Erfahrungen mit Grossschadenverteilungen,” Mitteil. Schweiz. Verein Versicherungsmath 2, 149–165, (1993).

  • Schultze, J. and Steinebach, J., “On least squares estimates of an exponential tail coefficient,” Stat. Decis. 14, 353–372, (1996).

    MathSciNet  MATH  Google Scholar 

  • Singh, V. and Guo, H., “Parameter estimation for 2-parameter Generalized Pareto Distribution by POME,” Stoch. Hydrol. Hydraul. 11(3), 211–227, (1997).

    MATH  Google Scholar 

  • Smith, R., “Estimating tails of probability distributions,” Ann. Stat. 15(3), 1174–1207, (1987).

    MATH  Google Scholar 

  • Smith, R. and Naylor, J., “A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution,” Appl. Stat. 36(3), 358–369, (1987).

    MathSciNet  Google Scholar 

  • Tancredi, A., Anderson, C., and Ohagan, A., “A Bayesian model for threshold uncertainty in extreme value theory,” Working paper 2002.12, Dipartimento di Scienze Statistiche, Universita di Padova. (2002).

  • Worms, R., “Vitesse de convergence de l'approximation de Pareto Généralisée de la loi des excès,” Comptes-Rendus de l'Académie des Sciences, série 1 Tome 333, 65–70, (2001).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mhamed-Ali El-Aroui.

Additional information

AMS 2000 Subject Classification

Primary—62G32, 62F15, 62G09

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diebolt, J., El-Aroui, MA., Garrido, M. et al. Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modelling. Extremes 8, 57–78 (2005). https://doi.org/10.1007/s10687-005-4860-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-005-4860-9

Key words

Navigation