Skip to main content
Log in

Calculation of Cosmic microwave background radiation parameters using COBE/FIRAS dataset

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we estimate the Cosmic Microwave Background (CMB) temperature using the data of the monopole spectrum from the Cosmic Background Explorer/ Far-Infrared Absolute Spectrophotometer (COBE/FIRAS). Utilising the idea of straight-line fitting, we obtain the temperature and chemical potential. The temperature of the CMB is found to be (2.725007 ± 0.000024) K (only statistical error) by using the monopole spectrum. Handling the data of the monopole spectrum the chemical potential is obtained as (-1.1 ± 3.4) × 10–5 with an upper bound |µ| < 5.7 × 10–5 (95% confidence level). The amplitude of the CMB dipole is found to be, Tamp = (3.47 ± 0.11) mK. We estimate an upper limit for the rms value of the fluctuation in chemical potential as Δµ < 1.2 × 10–4 (95% confidence level). The upper limit of y- distortion is calculated as y < 1.0 × 10–4 (95% confidence level).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Partridge, R.B., 3 K: The cosmic microwave background radiation. vol 393. Cambridge University Press (1995). https://doi.org/10.1017/CBO9780511525070

  2. Gawiser, E., Silk, J.: The cosmic microwave background radiation. Phys. Rep. 333, 245–267 (2000). https://doi.org/10.1016/S0370-1573(00)00025-9

    Article  ADS  Google Scholar 

  3. Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965). https://doi.org/10.1086/148307

    Article  ADS  Google Scholar 

  4. Hu, W., White, M.: CMB anisotropies: Total angular momentum method. Phys. Rev. D 56(2), 596 (1997). https://doi.org/10.1103/PhysRevD.56.596

    Article  ADS  Google Scholar 

  5. Hanany, S., Jaffe, A.H., Scannapieco, E.: The effect of the detector response time on bolometric cosmic microwave background anisotropy experiments. Mon. Not. R. Astron. Soc. 299(3), 653–660 (1998). https://doi.org/10.1046/j.1365-8711.1998.01705.x

    Article  ADS  Google Scholar 

  6. Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A. and Wright, E.L.: The cosmic microwave background spectrum from the full cobe* firas data set. Astrophys. J. 473(2), 576 (1996). https://doi.org/10.48550/arXiv.astro-ph/9605054

  7. Durrer, R.: The cosmic microwave background: the history of its experimental investigation and its significance for cosmology. Class. Quantum Gravity 32(12), 124007 (2015)

    Article  ADS  Google Scholar 

  8. Riechers, D.A., Weiss, A., Walter, F. et al.: Microwave background temperature at a redshift of 6.34 from H2O absorption. Nature (2022). https://doi.org/10.1038/s41586-021-04294-5

  9. Klimenko, V.V., Ivanchik, A.V., Petitjean, P., Noterdaeme, P., Srianand, R.: Estimation of the Cosmic Microwave Background Temperature from Atomic C I and Molecular CO Lines in the Interstellar Medium of Early Galaxies. Astron. Lett. 46(11), 715–725 (2020). https://doi.org/10.1134/S1063773720110031

    Article  ADS  Google Scholar 

  10. Fixsen, D.J., Kogut, A., Levin, S., Limon, M., Lubin, P., Mirel, P., Seiffert, M., Wollack, E.: The temperature of the cosmic microwave background at 10 GHz. Astrophys. J. 612(1), 86 (2004)

    Article  ADS  Google Scholar 

  11. Kogut, A., Bensadoun, M., De Amici, G., Levin, S., Smoot, G.F. and Witebsky, C.: A measurement of the temperature of the cosmic microwave background at a frequency of 7.5 GHz, (1989)

  12. Fixsen, D.J.: The temperature of the cosmic microwave background. Astrophys J 707(2), 916 (2009)

    Article  ADS  Google Scholar 

  13. Mather, J.C., Fixsen, D.J., Shafer, R.A., Mosier, C., Wilkinson, D.T.: Calibrator Design for the COBE* Far Infrared Absolute Spectrophotometer (FIRAS). Astrophys. J. 512(2), 511 (1999). https://doi.org/10.1086/306805

    Article  ADS  Google Scholar 

  14. Johnson, D.G., Wilkinson, D.T.: A 1 percent measurement of the temperature of the cosmic microwave radiation at lambda= 1.2 centimeters. Astrophys. J. 313, L1-L4 (1987)

  15. Crane, P., Hegyi, D.J., Mandolesi, N., Danks, A.C.: Cosmic background radiation temperature from CN absorption. Astrophys. J. 309, 822–827 (1986)

    Article  ADS  Google Scholar 

  16. Meyer, D.M., Jura, M.: A precise measurement of the cosmic microwave background temperature from optical observations of interstellar CN. Astrophys. J. 297, 119–132 (1985)

    Article  ADS  Google Scholar 

  17. Dhal, S., Paul, R.K.: Investigation on CMB monopole and dipole using blackbody radiation inversion. Sci. Rep. 13, 3316 (2023). https://doi.org/10.1038/s41598-023-30414-4

    Article  ADS  Google Scholar 

  18. COBE/FIRAS CMB Monopole spectrum. (2003-03-01). https://lambda.gsfc.nasa.gov/product/cobe/firas_monopole_get.html

  19. Hogg, D.W., Bovy, J., Lang, D.: Data analysis recipes: Fitting a model to data. arXiv preprint arXiv:1008.4686 (2010). https://doi.org/10.48550/arXiv.1008.4686

  20. Shine, A.D.: Fitting Experimental Data to Straight Lines (Including Error Analysis). Student Everything Page, University of Delaware, (2006).

  21. Pitrou, C., Stebbins, A.: Parameterization of temperature and spectral distortions in future CMB experiments. Gen. Relativ. Gravit. 46(11), 1806 (2014). https://doi.org/10.1007/s10714-104-1806-z

    Article  Google Scholar 

  22. Chluba, J.: Refined approximations for the distortion visibility function and μ-type spectral distortions. Mon. Not. R. Astron. Soc. 440(3), 2544–2563 (2014). https://doi.org/10.1093/mnras/stu414

    Article  ADS  Google Scholar 

  23. Hu, W. Wandering in the background: a CMB explorer. arXiv preprint astro-ph/9508126 (1995). https://doi.org/10.48550/arXiv.astro-ph/9508126

  24. Tashiro, H.: CMB spectral distortions and energy release in the early universe. Prog. Theor. Exp. Phys. (2014). https://doi.org/10.1093/ptep/ptu066

    Article  Google Scholar 

  25. Konar, K., Bose, K., Paul, R.K.: Revisiting cosmic microwave background radiation using blackbody radiation inversion. Sci. Rep. 11(1), 1–9 (2021). https://doi.org/10.1038/s41598-020-80195-3

    Article  Google Scholar 

  26. Choudhury, S.L., Paul, R.K.: A new approach to the generalization of Planck’s law of blackbody radiation. Ann. Phys. 395, 317–325 (2018). https://doi.org/10.1016/j.aop.2018.06.004

    Article  ADS  Google Scholar 

  27. Beiser, A.: Concepts of modern physics. Tata McGraw-Hill Education, (2003).

  28. Mather, J.C., Cheng, E.S., Cottingham, D., et al.: A Measurement of the Cosmic Microwave Background Spectrum by the COBE FIRAS Instrument. Astrophys. J. 420, 439–444 (1994)

    Article  ADS  Google Scholar 

  29. Meerburg, P.D., Meyers, J., Van, E.A.: Reconstructing the primary CMB dipole. Phys. Rev. D 96(8), 083519 (2017). https://doi.org/10.1103/PhysRevD.96.083519

  30. Kamionkowski, M., Knox, L.: Aspects of the cosmic microwave background dipole. Phys. Rev. D 67(6), 063001 (2003). https://doi.org/10.1103/PhysRevD.67.063001

  31. Khatri, R., & Sunyaev, R. A.: Beyond y and μ: the shape of the CMB spectral distortions in the intermediate epoch, 1.5× 104≲ z≲ 2× 105. J. Cosmol. Astropart. Phys. 2012(09), 016 (2012). https://doi.org/10.1088/1475-7516/2012/09/016

  32. Khatri, R., Sunyaev, R.: Constraints on μ-distortion fluctuations and primordial non-Gaussianity from Planck data. J. Cosmol. Astropart. Phys. 2015(09), 026 (2015). https://doi.org/10.48550/arXiv.1507.05615

  33. Kogut, A., et al.: The Primordial Infation Explorer (PIXIE): A nulling polarimeter for cosmic microwave background observations. J. Cosmol. Astropart. Phys. 2011, 25 (2011)

    Article  Google Scholar 

  34. Andre, P. et al.: PRISM (Polarized Radiation Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave and Far-Infrared Sky, arXiv:1306.2259, (2013). https://doi.org/10.48550/arXiv.1306.2259

  35. Biyajima, M., Mizoguchi, T.: Analysis of residual spectra and the monopole spectrum for 3 K blackbody radiation by means of non-extensive thermostatistics. Phys. Lett. A 376(47–48), 3567–3571 (2012). https://doi.org/10.1016/j.physleta.2012.10.036

    Article  ADS  Google Scholar 

  36. Danese, L., De Zotti, G.: The relic radiation spectrum and the thermal history of the Universe. La Rivista del Nuovo Cimento (1971–1977) 7(3), 277–362 (1977). https://doi.org/10.1007/BF02747276

Download references

Acknowledgements

We would like to thank the Department of Physics of Birla Institute of Technology, Mesra, Ranchi for providing us a wonderful environment during our research. We are very much grateful to Pranjali Bhattacharjee for her help and support. We would also like to thank B. Pathak and Rajeev Kumar (Department of Physics, BIT Mesra, Ranchi) for encouraging us in our research. Authors also thank reviewer for his valuable suggestion to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Somita Dhal has performed the analysis, computational work and wrote the main manuscript text with figure. Sneha Singh has performed the analysis, computational work and wrote the main manuscript. Koustav Konar performed statistical analysis and computational work. Ratan Kumar Paul conceived the idea and executed the mathematical model, performed the computational work, wrote the manuscript, and supervised the overall research work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. K. Paul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhal, S., Singh, S., Konar, K. et al. Calculation of Cosmic microwave background radiation parameters using COBE/FIRAS dataset. Exp Astron 56, 715–726 (2023). https://doi.org/10.1007/s10686-023-09904-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-023-09904-w

Keywords

Navigation