Skip to main content
Log in

An artificial intelligence based approach for constraining the redshift of blazars using γ–ray observations

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we discuss an artificial intelligence based approach to constrain the redshift of blazars using combined γ–ray observations from the Fermi Large Area Telescope (LAT) and ground based atmospheric Cherenkov telescopes (ACTs) in GeV and sub TeV energy regimes respectively. The spectral measurements in GeV and TeV energy bands show a redshift dependent spectral break in the γ–ray spectra of blazars. We use this observational feature of blazars to constrain their redshift. The observed spectral information of blazars with known redshifts reported in the Fermi catalogs (3FGL and 1FHL) and TeV catalog are used to train an Artificial Neural Network (ANN) based algorithm. The training of the ANN methodology is optimized using Levenberg - Marquardt algorithm with γ–ray spectral indices and redshifts of 35 well observed blazars as input and output parameters respectively. After training, we use only observed spectral indices in GeV and sub TeV regimes for 10 blazars as inputs to predict their redshifts. The comparison of predicted redshifts by the ANN with the known redshift suggests that both the values are consistent within \(\sim \) 18% uncertainty. The method proposed in the present work would be helpful in future for constraining or predicting the redshifts of the blazars using only observational γ–ray spectral informations obtained from the Fermi-LAT and current generation IACTs as well as from the next generation Cherenkov Telescope Array (CTA) with improved source statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://tevcat.uchicago.edu/

  2. https://fermi.ssdc.asi.it/

References

  1. Urry, C.M., Padovani, P.: Unified Schemes for Radio-Loud Active Galactic Nuclei. PASP 107, 803 (1995)

    Article  ADS  Google Scholar 

  2. Lister, M., et al.: MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017. ApJS 234, 12 (2018)

    Article  ADS  Google Scholar 

  3. Blinov, D., et al.: RoboPol: optical polarization-plane rotations and flaring activity in blazars. MNRAS 457, 2252 (2016)

    Article  ADS  Google Scholar 

  4. Tavecchio, F., et al.: Constraints on the Physical Parameters of TeV Blazars. ApJ 509, 608 (1998)

    Article  ADS  Google Scholar 

  5. Aharonian, F.A.: TeV gamma rays from BL Lac objects due to synchrotron radiation of extremely high energy protons. NewA 5, 337 (2000)

    Article  ADS  Google Scholar 

  6. Böttcher, M., et al.: Leptonic and Hadronic Modeling of Fermi-detected Blazars. ApJ 768, 54 (2013)

    Article  ADS  Google Scholar 

  7. Zech, A., et al.: Expected signatures from hadronic emission processes in the TeV spectra of BL Lacertae objects. A&A 602, 25 (2017)

    Article  Google Scholar 

  8. Abdo, A.A., et al.: The Spectral Energy Distribution of Fermi Bright Blazars. ApJ 716, 30 (2010)

    Article  ADS  Google Scholar 

  9. Meyer, E.T., et al.: From the Blazar Sequence to the Blazar Envelope: Revisiting the Relativistic Jet Dichotomy in Radio-loud Active Galactic Nuclei. ApJ 740, 98 (2011)

    Article  ADS  Google Scholar 

  10. Padovani, P., Giommi, P.: The Connection between X-Ray and Radio-selected BL Lacertae Objects. ApJ 444, 567 (1995)

    Article  ADS  Google Scholar 

  11. Giommi, P., et al.: A simplified view of blazars: clearing the fog around long-standing selection effects. MNRAS 429, 2899 (2012)

    Article  ADS  Google Scholar 

  12. Piranomonte, S., et al.: The sedentary survey of extreme high-energy peaked BL Lacs. III. Results from optical spectroscopy. A&A 470, 787 (2007)

    Article  ADS  Google Scholar 

  13. Shaw, M.S., et al.: Spectroscopy of the Largest Ever γ-Ray selected BL Lac Sample. ApJ 764, 135 (2013)

    Article  ADS  Google Scholar 

  14. Paiano, S., et al.: On the Redshift of TeV BL Lac Objects. ApJ 837, 144 (2017)

    Article  ADS  Google Scholar 

  15. Shaw, M.S., et al.: Spectroscopy of Broad-line Blazars from 1LAC. ApJ 748, 49 (2012)

    Article  ADS  Google Scholar 

  16. Yoshi, Y., et al.: A New Method for Measuring Extragalactic Distances. ApJ 784, L11 (2014)

    Article  ADS  Google Scholar 

  17. Prandini, E., et al.: Constraining blazar distances with combined Fermi and TeV data: an empirical approach. MNRAS 405, L76 (2010)

    Article  ADS  Google Scholar 

  18. Domínguez, A., et al.: Detection of the Cosmic γ-Ray Horizon from Multiwavelength Observations of Blazars. ApJ 770, 77 (2013)

    Article  ADS  Google Scholar 

  19. Singh, K.K., et al.: Intrinsic VHE gamma-ray spectra of blazars as a probe for extragalactic background light. NewA 27, 34 (2014)

    Article  ADS  Google Scholar 

  20. Franceschini, A., Rodighiero, G.: The extragalactic background light revisited and the cosmic photon-photon opacity. A&A 603, A34 (2017)

    Article  ADS  Google Scholar 

  21. The Fermi-LAT Collaboration: A gamma-ray determination of the Universe’s star formation history. Science 362, 1031 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Qin, L., et al.: Constraining the red shifts of TeV BL Lac objects. MNRAS 473, 3755 (2018)

    Article  ADS  Google Scholar 

  23. Romero, G.E., et al.: Relativistic Jets in Active Galactic Nuclei and Microquasars. SSRv 207, 5 (2012)

    ADS  Google Scholar 

  24. Atwood, W.B., et al.: The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. ApJ 697, 1071 (2009)

    Article  ADS  Google Scholar 

  25. Acero, F., et al.: Fermi Large Area Telescope Third Source Catalog. ApJS 218, 23 (2015)

    Article  ADS  Google Scholar 

  26. Ackermann, M., et al.: The First Fermi-LAT Catalog of Sources above 10 GeV. ApJS 209, 34 (2013)

    Article  ADS  Google Scholar 

  27. Carosi, A., et al.: The very high energy source catalogue at the ASI Science Data Center. ICRC 34, 757 (2015)

    Google Scholar 

  28. Abdo, A.A., et al.: Spectral Properties of Bright Fermi-Detected Blazars in the Gamma-Ray Band. ApJ 710, 1271 (2010)

    Article  ADS  Google Scholar 

  29. Sinkus, R.: A novel approach to error function minimization for feedforward neural networks. NIM A 361, 290 (1995)

    Article  ADS  Google Scholar 

  30. Dhar, V.K., et al.: Comparative performance of some popular artificial neural network algorithms on benchmark and function approximation problems. Pramana 74, 307 (2010)

    Article  ADS  Google Scholar 

  31. McCulloch, W., Pitts, W.: A Logical Calculas of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5, 115 (1943)

    Article  Google Scholar 

  32. Dhar, V.K., et al.: Artificial Neural Network based γ-hadron segregation methodology for TACTIC telescope. NIM A 708, 56 (2013)

    Article  ADS  Google Scholar 

  33. Rumelhart, D.E., et al.: Learning representations by back-propagating errors. Nature 323, 533 (1986)

    Article  ADS  Google Scholar 

  34. Press, W.H., Spergel, D.N.: Choice of Order and Extrapolation Method in Aarseth-Type N-Body Algorithms. ApJ 325, 715 (1988)

    Article  ADS  Google Scholar 

  35. Dhar, V.K., et al.: Artificial neural network-based error compensation procedure for low-cost encoders. Measurement Science and Technology 21, 015112 (2010)

    Article  ADS  Google Scholar 

  36. Stecker, F.W., et al.: TeV Gamma Rays from 3C 279: A Possible Probe of Origin and Intergalactic Infrared Radiation Fields. ApJ 390, L49 (1992)

    Article  ADS  Google Scholar 

  37. Stecker, F.W., et al.: Intergalactic Photon Spectra from the Far-IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High-Energy Gamma Rays. ApJ 648, 774 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Part of this work is based on archival data, software or online services provided by the Space Science Data Center -ASI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.K., Dhar, V.K. & Meintjes, P.J. An artificial intelligence based approach for constraining the redshift of blazars using γ–ray observations. Exp Astron 48, 297–311 (2019). https://doi.org/10.1007/s10686-019-09647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-019-09647-7

Keywords

Navigation