Skip to main content
Log in

ChemiX: a Bragg crystal spectrometer for the Interhelioprobe interplanetary mission

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Interhelioprobe (IHP), an analogue to the ESA Solar Orbiter, is the prospective Russian space solar observatory intended for in-situ and remote sensing investigations of the Sun and the inner heliosphere from a heliocentric orbit with the perihelion of about 60 solar radii. One of several instruments on board will be the Bragg crystal spectrometer ChemiX which will measure X-ray spectra from solar corona structures. Analysis of the spectra will allow the determination of the elemental composition of plasma in hot coronal sources like flares and active regions. ChemiX is under development at the Wrocław Solar Physics Division of the Polish Academy of Sciences Space Research Centre in collaboration with an international team (see the co-author list). This paper gives an overview of the ChemiX scientific goals and design preparatory to phase B of the instrument development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Acton, L.W., Finch, M.L., Gilbreth, C.W., Culhane, J.L., Bentley, R.D., Bowles, J.A., Guttridge, P., Gabriel, A.H., Firth, J.G., Hayes, R.W.: The soft X-ray polychromator for the solar maximum mission. Solar Phys. 65, 53–71 (1980). doi:10.1007/BF00151384

    Article  ADS  Google Scholar 

  2. Antia, H.M., Basu, S.: Determining solar abundances using helioseismology. Astrophys. J. 644, 1292–1298 (2006). doi:10.1086/503707

    Article  ADS  Google Scholar 

  3. Antonucci, E., Gabriel, A.H., Dennis, B.R.: The energetics of chromospheric evaporation in solar flares. Astrophys. J. 287, 917–925 (1984). doi:10.1086/162749

    Article  ADS  Google Scholar 

  4. Batterman, B.W., Cole, H.: Dynamical diffraction of x rays by perfect crystals. Rev. Mod. Phys. 36, 681 (1964). doi:10.1103/RevModPhys.36.681

    Article  ADS  MathSciNet  Google Scholar 

  5. Bradshaw, S.J., Raymond, J.: Collisional and radiative processes in optically thin plasmas. Space Sci. Rev. 178, 271–306 (2013). doi:10.1007/s11214-013-9970-0

    Article  ADS  Google Scholar 

  6. Bucksch, R., Otto, J., Renninger, M.: Die ‘Diffraction Pattern’ des Idealkristalls fur Röntgenstrahlinterferenzen im Bragg-Fall̈. Acta Crystallogr. 23, 507–511 (1967). doi:10.1107/S0365110X6700310X

    Article  Google Scholar 

  7. Culhane, J.L., Hiei, E., Doschek, G.A., Cruise, A.M., Ogawara, Y., Uchida, Y., Bentley, R.D., Brown, C.M., Lang, J., Watanabe, T., Bowles, J.A., Deslattes, R.D., Feldman, U., Fludra, A., Guttridge, P., Henins, A., Lapington, J., Magraw, J., Mariska, J.T., Payne, J., Phillips, K.J.H., Sheather, P., Slater, K., Tanaka, K., Towndrow, E., Trow, M.W., Yamaguchi, A.: The bragg crystal spectrometer for SOLAR-A. Solar Phys. 136, 89–104 (1991). doi:10.1007/BF00151696

    Article  ADS  Google Scholar 

  8. Doschek, G.A., Kreplin, R.W.: Feldman, U.: High-resolution solar flare X-ray spectra. Astrophys. J. Lett. 233, L157–L160 (1979). doi:10.1086/183096

    Article  ADS  Google Scholar 

  9. Dudnik, O.V.: Investigation of the Earths radiation belts in May 2009 at the low orbit satellite with the STEP-F instrument. Space Sci. Technol. 16, 12–28 (2010). doi:10.1086/183096. In Russian

    Google Scholar 

  10. Dudnik, O.V., Kurbatov, E., Avilov, A., Prieto, M., Sanchez, S., Spassky, A., Titov, K., Sylwester, J., Gburek, S., Podgórski, P.: Results of the first tests of the SIDRA satellite-borne instrument breadboard model. Problems of Atomic Science and Technology, 3 (2013)

  11. Dudnik, O.V., Kurbatov, E., Sylwester, J., Siarkowski, M., Kowaliński, M., Titov, K., Andryushenko, L., Zajtsevsky, I., Valtonen, E.: Development of small-sized SIDRA device for monitoring of charged particle fluxes in space, pp 62–67. Publ. House “Akademperiodika” (2014). In Russian

  12. Dudnik, O.V., Kurbatov, E., Tarasov, V., Andryushenko, L., Zajtsevsky, I., Sylwester, J., Bąkała, J., Kowaliński, M.: Background particle detector for the solar X-ray photometer ChemiX of space mission “Interhelioprobe”: an adjustment of breadboard model modules. Kosmichna Nauka I Tekhnologiya 21, 3–14 (2015). ISSN 1561-8889, In Russian

    Article  Google Scholar 

  13. Dudnik, O.V., Prieto, M., Kurbatov, E., Sanchez, S., Titov, K., Sylwester, J., Gburek, S., Podgórski, P.: Functional capabilities of the breadboard model of SIDRA satellite-borne instrument. Problems of Atomic Science and Technology 3 (2013)

  14. Dzifčáková, E., Kulinová, A., Chifor, C., Mason, H.E., Del Zanna, G., Sylwester, J., Sylwester, B.: Nonthermal and thermal diagnostics of a solar flare observed with RESIK and RHESSI. Astron. Astrophys. 488, 311–321 (2008). doi:10.1051/0004-6361:20078367

    Article  ADS  Google Scholar 

  15. Feldman, U., Doschek, G.A., Kreplin, R.W., Mariska, J.T.: High-resolution X-ray spectra of solar flares. IV - General spectral properties of M type flares. Astrophys. J. 241, 1175–1185 (1980). doi:10.1086/158434

    Article  ADS  Google Scholar 

  16. Fludra, A., Bentley, R.D., Lemen, J.R., Jakimiec, J., Sylwester, J.: Turbulent and directed plasma motions in solar flares. Astrophys. J. 344, 991–1003 (1989). doi:10.1086/167866

    Article  ADS  Google Scholar 

  17. Hirsch, P.B., Ramachandran, G.N.: Intensity of X-ray reflexion from perfect and mosaic absorbing crystals. Acta Crystallographica 3, 187–194 (1950). doi:10.1107/S0365110X50000458

    Article  Google Scholar 

  18. Jakimiec, J., Fludra, A., Lemen, J.R., Dennis, B.R., Sylwester, J.: Investigations of turbulent motions and particle acceleration in solar flares. Adv. Space Res. 6, 191–194 (1986). doi:10.1016/0273-1177(86)90143-2

    Article  ADS  Google Scholar 

  19. Jakimiec, J., Korneev, V.V., Krutov, V.V., Zhitnik, I.A., Płocieniak, S., Sylwester, B., Sylwester, J.: Analysis of the intensities and profiles of the spectral line Mg XII 8.42 Å in the solar X-ray spectrum. Solar Phys. 44, 391–401 (1975). doi:10.1007/BF00153218

    Article  ADS  Google Scholar 

  20. James, W.R.: The optical principles of the diffraction of X-rays. G. Bell and Sons, Inc., London (1950)

    Google Scholar 

  21. Krutov, V.V., Korneev, V.V., Karev, U.I., Lomkova, V.M., Oparin, S.N., Urnov, A.M., Zhitnik, I.A., Bromboszcz, G., Siarkowski, M., Sylwester, J.: Analysis of the high-resolution X-ray spectra obtained aboard the Intercosmos 16 satellite. I - Identification of the lines in the 9.14-9.33 A spectral region. Solar Phys. 73, 105–119 (1981). doi:10.1007/BF00153148

    Article  ADS  Google Scholar 

  22. Kulinová, A., Dzifčáková, E., Sylwester, B., Sylwester, J.: Non-thermal Diagnostics of a Flare Observed by RESIK. Central European Astrophysical Bulletin 33, 243–252 (2009)

    ADS  Google Scholar 

  23. Kuznetsov, V., Zelenyi, L.: The interhelioprobe mission for solar and heliospheric studies. In: 40th COSPAR Scientific Assembly, COSPAR Meeting. To be published, vol. 40, p 1721 (2014)

  24. Kuznetsov, V.D., Zelenyi, L.M.: Space projections on solar-terrestrial physics. Geomagn. Aeron. 49, 1137–1147 (2009). doi:10.1134/S0016793209080209

    Article  ADS  Google Scholar 

  25. Laming, J.M.: Non-Wkb models of the first ionization potential effect: implications for solar coronal heating and the coronal helium and neon abundances. Astrophys. J. 695, 954–969 (2009). doi:10.1088/0004-637X/695/2/954

    Article  ADS  Google Scholar 

  26. Laming, J.M.: The FIP and inverse FIP effects in solar and stellar coronae. Living Reviews in Solar Physics 12, 2 (2015). doi:10.1007/lrsp-2015-2

    Article  ADS  Google Scholar 

  27. Marsch, E., Harrison, R., Pace, O., Antonucci, E., Bochsler, P., Bougeret, J.L., Fleck, B., Langevin, Y., Marsden, R., Schwenn, R., Vial, J.C.: Solar Orbiter, a high-resolution mission to the Sun and inner heliosphere. In: Battrick, B., Sawaya-Lacoste, H., Marsch, E., Martinez Pillet, V., Fleck, B., Marsden, R. (eds.) Solar Encounter. Proceedings of the First Solar Orbiter Workshop, vol. 493, p D11. ESA Special Publication (2001)

  28. Oraevsky, V.N., Galeev, A.A., Kuznetsov, V.D., Zelenyi, L.M.: Solar orbiter and russian aviation and space agency interhelioprobe. In: Battrick, B., Sawaya-Lacoste, H., Marsch, E., Martinez Pillet, V., Fleck, B., Marsden, R. (eds.) Solar Encounter. Proceedings of the First Solar Orbiter Workshop, vol. 493, pp 95–108. ESA Special Publication (2001)

  29. Phillips, K.J.H., Pike, C.D., Lang, J., Watanbe, T., Takahashi, M.: Iron K beta line emission in solar flares observed by YOHKOH and the solar abundance of iron. Astrophys. J. 435, 888–897 (1994). doi:10.1086/174870

    Article  ADS  Google Scholar 

  30. Phillips, K.J.H., Sylwester, J., Sylwester, B., Kuznetsov, V.D.: The solar X-ray continuum measured by RESIK. Astrophys. J. 711, 179–184 (2010). doi:10.1088/0004-637X/711/1/179

    Article  ADS  Google Scholar 

  31. Płocieniak, S., Sylwester, J., Kordylewski, Z., Sylwester, B.: Determination of wavelengths and line shifts based on X-ray spectra from Diogeness. In: Wilson, A. (ed.) Solar Variability: from Core to Outer Frontiers, vol. 506, pp 963–966. ESA Special Publication (2002)

  32. Sachez del Rio, M., Dejus, R.: XOP v2.4: recent developments of the X-ray optics software toolkit. In: Proceedings of SPIE 8141, advances in computational methods for X-ray optics II, vol. 8141 (2011), 10.1117/12.893911

  33. Serenelli, A.M., Basu, S., Ferguson, J.W., Asplund, M.: New solar composition: the problem with solar models revisited. Astrophys. J. Lett. 705, L123–L127 (2009). doi:10.1088/0004-637X/705/2/L123

    Article  ADS  Google Scholar 

  34. Siarkowski, M., Sylwester, J., Bromboszcz, G., Korneev, V.V., Mandelshtam, S.L., Oparin, S.N., Urnov, A.M., Zhitnik, I.A., Vasha, S.: Analysis of the high resolution Mg XI X-ray spectra. II - Physical parameters of the plasma in active region McMath 14352. Solar Phys. 77, 183–203 (1982). doi:10.1007/BF00156104

    Article  ADS  Google Scholar 

  35. Stȩślicki, M., Sylwester, J., Siarkowski, M., Kowaliński, M., Płocieniak, S., Bąkała, J., Szaforz, ż., Kuzin, S.: Soft X-ray solar polarimeter-spectrometer. In: 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, vol. 9441. SPIE Proceedings (2014), doi:10.1117/12.2176043

  36. Sylwester, B., Faucher, P., Jakimiec, J., Krutov, V.V., McWhirter, R.W.P.: Investigation of the Mg XII 8.42 A doublet in solar flare spectra. Solar Phys. 103, 67–87 (1986). doi:10.1007/BF00154859

    Article  ADS  Google Scholar 

  37. Sylwester, B., Phillips, K.J.H., Sylwester, J., Kepa̧, A.: Silicon abundance from RESIK solar flare observations. Solar Phys. 283, 453–461 (2013). doi:10.1007/s11207-013-0250-7

    Article  ADS  Google Scholar 

  38. Sylwester, B., Sylwester, J., Phillips, K.J.H.: X-ray studies of flaring plasma. J. Astrophys. Astron. 29, 147–150 (2008). doi:10.1007/s12036-008-0017-y

    Article  ADS  Google Scholar 

  39. Sylwester, B., Sylwester, J., Phillips, K.J.H.: Soft X-ray coronal spectra at low activity levels observed by RESIK. Astron. Astrophys. 514, A82 (2010). doi:10.1051/0004-6361/200912907

    Article  ADS  Google Scholar 

  40. Sylwester, B., Sylwester, J., Phillips, K.J.H., Kepa̧, A., Mrozek, T.: Solar flare composition and thermodynamics from RESIK X-ray spectra. Astrophys. J. 787, 122 (2014). doi:10.1088/0004-637X/787/2/122

    Article  ADS  Google Scholar 

  41. Sylwester, J., Farnik, F.: Diogeness - Soft X-ray spectrometer-photometer for studies of flare energy balance. Bulletin of the Astronomical Institutes of Czechoslovakia 41, 149–157 (1990)

    ADS  Google Scholar 

  42. Sylwester, J., Gaicki, I., Kordylewski, Z., Kowaliński, M., Nowak, S., Płocieniak, S., Siarkowski, M., Sylwester, B., Trzebiński, W., Bakała, J., Culhane, J.L., Whyndham, M., Bentley, R.D., Guttridge, P.R., Phillips, K.J.H., Lang, J., Brown, C.M., Doschek, G.A., Kuznetsov, V.D., Oraevsky, V.N., Stepanov, A.I., Lisin, D.V.: RESIK: a bent crystal X-ray spectrometer for studies of solar coronal plasma composition. Solar Phys. 226, 45–72 (2005). doi:10.1007/s11207-005-6392-5

    Article  ADS  Google Scholar 

  43. Sylwester, J., Kordylewski, Z., Płocieniak, S., Siarkowski, M., Kowaliński, M., Nowak, S., Trzebiński, W., Stȩślicki, M., Sylwester, B., Stańczyk, E., Zawerbny, R., Szaforz, ż., Phillips, K.J.H., Fárník, F., Stepanov, A.: X-ray flare spectra from the DIOGENESS spectrometer and its concept applied to ChemiX on the interhelioprobe spacecraft. Solar Phys. (2015). doi:10.1007/s11207-014-0644-1

  44. Sylwester, J., Sylwester, B., Landi, E., Phillips, K.J.H., Kuznetsov, V.D.: Determination of K, Ar, Cl, S, Si and Al flare abundances from RESIK soft X-ray spectra. Adv. Space Res. 42, 838–843 (2008). doi:10.1016/j.asr.2007.05.060

    Article  ADS  Google Scholar 

  45. Sylwester, J., Sylwester, B., Phillips, K.J.H., Kuznetsov, V.D.: Highly ionized potassium lines in solar X-ray spectra and the abundance of potassium. Astrophys. J. 710, 804–809 (2010). doi:10.1088/0004-637X/710/1/804

    Article  ADS  Google Scholar 

  46. Sylwester, J., Sylwester, B., Phillips, K.J.H., Kuznetsov, V.D.: The solar flare sulfur abundance from RESIK observations. Astrophys. J. 751, 103 (2012). doi:10.1088/0004-637X/751/2/103

    Article  ADS  Google Scholar 

  47. Tanaka, K., Watanabe, T., Nishi, K., Akita, K.: High-resolution solar flare X-ray spectra obtained with rotating spectrometers on the HINOTORI satellite. Astrophys. J. Lett. 254, L59–L63 (1982). doi:10.1086/183756

    Article  ADS  Google Scholar 

  48. Testa, P.: Element abundances in X-ray emitting plasmas in stars. Space Sci. Rev. 157, 37–55 (2010). doi:10.1007/s11214-010-9714-3

    Article  ADS  Google Scholar 

  49. Zachariasen, W.H.: Theory of X-ray diffraction in crystals. John Wiley and Sons, Inc., New York (1945)

    Google Scholar 

  50. Zarro, D.M., Lemen, J.R.: Conduction-driven chromospheric evaporation in a solar flare. Astrophys. J. 329, 456–463 (1988). doi:10.1086/166391

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the Polish National Science Centre grants: 2011/01/M/ST9/05878, 2011/01/M/ST9/06096, and 2013/11/B/ST9/00234.

We also acknowledge use of the CHIANTI atomic database and code for Fig. 4, CHIANTI is a collaborative project involving George Mason University, University of Michigan (USA) and University of Cambridge (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ż. Szaforz.

Appendices

Appendix A: The geometry of the crystal – detector unit

The ChemiX is an X-ray spectrometer which uses bent crystals as dispersion elements. According to Bragg’s law

$$ 2d \, \sin \, \theta=n\lambda $$
(1)

only X-rays satisfying the Bragg condition, are reflected from the surface of the crystal. Here λ is the incident photon wavelength, d is the spacing of planes in the mono crystal wafer, 𝜃 is the incident angle with respect to the crystal plane, and n is an integer corresponding to the crystal’s reflection order. Therefore, for the bent crystal, in the 1st order reflection wavelength range λ 1λ 2 correspond to the angles 𝜃 1𝜃 2 (see Fig. 10).

Fig. 10
figure 10

Schematic geometry of the crystal-detector section with definition of the angles and other important parameters used

Figure 10 shows the schematic geometry of the crystal-detector unit of the ChemiX spectrometer. The plot is in the rectangular coordinate system with origin at the centre of the crystal curvature. The solar radiation, coming from above, is diffracted by the bent crystal with a radius of curvature r and the surface marked with a thick black solid line. After Bragg reflection it falls on a position-sensitive CCD detector, indicated in the figure with the thick yellow line. ChemiX contains a collimator, which narrows the field of view of the instrument. Therefore, we consider the possibility of observing the radiation deflected at an angle of ±3 arcmin from the rays coming from the center of symmetry. This is so called “offset angle”, labeled as φ. Two extreme rays that can fall on the crystal are marked as blue and red lines in the Fig. 10. They fall on the crystal at points with coordinates:

$$ x_{1}=r\,\cos\,(\theta_{1}-\varphi) $$
(2)
$$ y_{1}=r\,\sin\,(\theta_{1}-\varphi) $$
(3)

and

$$ x_{2}=r\,\cos\,(\theta_{2}+\varphi) $$
(4)
$$ y_{2}=r\,\sin\,(\theta_{2}+\varphi) $$
(5)

For a given type of crystal (i.e. specific crystal lattice spacing d), the offset angle φ, the detector length L and the desired wavelength range, our software determines the optimal geometry of the crystal–detector system. It calculates the crystal curvature, r , the positions of the edges of the crystal (x 1,y 1) and (x 2,y 2) and the positions of the edges of the detector (x 3,y 3) and (x 4,y 4).

Because we have nine unknowns we would need nine equations to uniquely solve the system. In addition to the (25) for a geometry shown in Fig. 10 we can write the following set of equation for the positions of the detector edges:

$$ y_{3}=a_{2}x_{3}+b_{2} $$
(6)
$$ y_{3}=a_{L}x_{3}+b_{L} $$
(7)
$$ y_{4}=a_{1}x_{4}+b_{1} $$
(8)
$$ y_{4}=a_{L}x_{4}+b_{L} $$
(9)

Here a 1, b 1, a 2 and b 2 are the coefficients (a- the slope, b- the y-intercept of the line in the form y = a x + b) of lines connecting the points of incidence of the extreme rays at the ends of the detector with the corresponding edges of the crystal. They can be established from the geometrical relationships between the angles in the system:

$$\begin{array}{@{}rcl@{}} a_{1}&=&\tan\,(\beta_{1})=\tan\,(2\theta_{1}-90^{\circ}-\varphi) \end{array} $$
(10)
$$\begin{array}{@{}rcl@{}} a_{2}&=&\tan\,(\beta_{2})=\tan\,(2\theta_{2}-90^{\circ}+\varphi) \end{array} $$
(11)
$$\begin{array}{@{}rcl@{}} b_{1}=y_{1}-x_{1}\, \tan\,(\beta_{1})&=&r\,\sin\,(\theta_{1}-\varphi)-r\,\cos\,(\theta_{1}-\varphi)\,\tan\,(2\theta_{1}-90^{\circ}-\varphi) \end{array} $$
(12)
$$\begin{array}{@{}rcl@{}} b_{2}=y_{2}-x_{2}\, \tan\,(\beta_{2})&=&r\,\sin\,(\theta_{2}+\varphi)-r\,\cos\,(\theta_{2}+\varphi)\,\tan\,(2\theta_{2}-90^{\circ}+\varphi) \end{array} $$
(13)

We have now eight equations, but we introduced two additional variables, a L and b L . Those coefficients define the straight line on which the detector lies. Thus three more equations are needed.

Firstly we can use the known length of the detector to write:

$$ L^{2}=(x_{4}-x_{3})^{2}+(y_{4}-y_{3})^{2} $$
(14)

For an optimal arrangement of the crystal – detector unit the angles δ between the extreme rays and the detector are the same (see: Fig. 10). Therefore we can write:

$$ \frac{a_{1}-a_{L}}{1+a_{1}a_{L}}=\frac{a_{L}-a_{2}}{1+a_{2}a_{L}} $$
(15)

Left and right sides of this equation are the expression on tangent of angle between detector and the extreme rays.

Due to the CCD’s housing we need some free space between the crystal and detector and so, we need to introduce p parameter- the distance between the closest part of the crystal and the detector. The last needed equation can be therefore written using this known parameter. Depending on the slope of the detector the equation may take one of the two forms:

$$ x_{4}=x_{1}+p $$
(16)

when the detector is positioned as shown in Fig. 10 (a L >0), or

$$ x_{3}=x_{1}+p $$
(17)

When x 3 is closer to the crystal than x 4 (a L <0).

Ultimately we have eleven unknown values and eleven equations (291415 and one of 16 or 17) so the problem can be solve unambiguously. Minimalization of parameter p or equalization of angles δ, described by (1517) can be treated as criteria for the optimization of the crystal–detector design but they are necessary for the closure of system of equations to be solved.

Firstly we determinate the radius of curvature. Starting with (14) we substitute the y 3 and y 4 into the (7) and (9). After transform we can write:

$$ {x_{4}^{2}}(1+{a_{L}^{2}})+x_{4}[-2x_{3}(1+{a_{L}^{2}})]+[x_{3}(1+{a_{L}^{2}})-L^{2}]=0 $$
(18)

which allow us to determinate the x 4:

$$ x_{4}=x_{3}+S $$
(19)

Here:

$$ S=\pm\frac{\sqrt{(1+{a_{L}^{2}})L^{2}}}{(1+{a_{L}^{2}})} $$
(20)

On the other hand using the (6), (7), (8) and (9) we have:

$$ a_{1}x_{4}+b_{1}-a_{L}x_{4}=a_{2}x_{3}+b_{2}-a_{L}x_{3} $$
(21)

We can solve it for x 3 and insert the (19) to get:

$$ x_{3}=\frac{b_{2}-b_{1}}{a_{1}-a_{2}}+S\frac{a_{L}-a_{1}}{a_{1}-a_{2}} $$
(22)

Now we can use appropriate (16) or (17) following by (12), (13) and (6) to obtain the relevant equations for crystal radius of curvature:

$$ r=\frac{p(a_{1}-a_{2})-S(a_{1}-a_{2})-S(a_{L}-a_{1})}{\sin\,(\theta_{2}+\varphi)-\sin\,(\theta_{1}-\varphi)-a_{2}\,\cos\,(\theta_{2}+\varphi)+a_{2}\,\cos\,(\theta_{1}-\varphi)} $$
(23)
$$ r=\frac{p(a_{1}-a_{2})-S(a_{L}-a_{1})}{\sin\,(\theta_{2}+\varphi)-\sin\,(\theta_{1}-\varphi)-a_{2}\,\cos\,(\theta_{2}+\varphi)+a_{2}\,\cos\,(\theta_{1}-\varphi)} $$
(24)

In the next step we solve the (15) with respect to variable a L . It is a quadratic equation which gives us two solutions. But from (16) and (17) we know, that the (23) works for a L >0 while the (24) works for a L <0. This allow us to choose appropriate solution of (15) and use it in selected equation for r. In this way we get four values for crystal radius of curvature. From the possible solutions of (23) and (24) we choose those, for which the value of radius of curvature are positive (convex crystal) and calculate the corresponding crystal and detector positions (x 3,y 3) and (x 4,y 4). Finally we chose an arrangement that give as small as possible size of crystal–detector unit.

Now we need to solve an inverse task, i.e. to calculate wavelengths corresponding to each pixel (x,y) of the detector. Without loss of generality we can assume that X-rays of given wavelength fall on the crystal at the coordinates (x 1,y 1). Points (x 1,y 1) and (x,y) define straight line with a slope a:

$$ y-y_{1}=a(x-x_{1}) $$
(25)

Using (10) for a:

$$ a=\tan\,(2\theta-\varphi-90^{\circ})=-\frac{\cos\,(2\theta-\varphi)}{\sin\,(2\theta-\varphi)} $$
(26)

and (2) and (3) for x 1 and y 1, we can obtain:

$$ y-r\,\sin\,(\theta-\varphi)=-\frac{\cos\,(2\theta-\varphi)}{\sin\,(2\theta-\varphi)}[x-r\,\cos\,(\theta-\varphi)] $$
(27)

This equation can be transformed into:

$$ \begin{array}{ccc} 2\,\sin\,\theta \,\cos\,\theta(y\,\cos\,\varphi+x\,\sin\,\varphi)+2\,\cos^{2}\,\theta(x\,\cos\,\varphi-y\,\sin\,\varphi)-(x\,\cos\varphi-y\,\sin\,\varphi)\\ =2r\,\cos^{3}\,\theta \,\cos^{2}\,\varphi-r\,\cos\,\theta\, \cos^{2}\,\varphi+2\,\sin\,\theta\, \cos^{2}\,\theta \,\sin\,\varphi\, \cos\,\varphi+2r\,\sin\,\theta\, \cos^{2}\,\theta \,\sin\,\varphi \,\cos\,\varphi\\ -r\,\sin\,\theta \,\sin\,\varphi \,\cos\,\varphi+2r\,\sin^{2}\,\theta\, \cos\,\theta\, \sin^{2}\,\varphi\\ +2r\,\sin^{2}\,\theta \,\cos\,\theta\, \cos^{2}\,\varphi-2r\,\sin\,\theta\, \cos^{2}\,\theta \,\sin\,\varphi \,\cos\,\varphi\\ +r\,\sin\,\theta \,\cos\,\varphi \,\sin\,\varphi-2r\,\sin\,\theta \,\cos^{2}\,\theta \,\sin\,\varphi\, \cos\,\varphi+2r\,\cos^{3}\,\theta \,\sin^{2}\,\varphi-r\,\cos\,\theta\, \sin^{2}\,\varphi \end{array} $$
(28)

We introduce the designations:

$$ A=y\,\cos\,\varphi+x\,\sin\,\varphi $$
(29)

and

$$ B=x\,\cos\,\varphi-y\,\sin\,\varphi $$
(30)

After making the substitution and simplification we obtain the fourth degree equation:

$$ \cos^{4}\,\theta\,[4(A^{2}+B^{2})]+\cos^{3}\,\theta\,[-4rB]+\cos^{2}\,\theta\,[-4(A^{2}+B^{2})+r^{2}]+\cos\,\theta\,[2rB]+[B^{2}]\,=\,0 $$
(31)

which may be solved using the FZ_ROOTS function available in IDL. This allows us to calculate for a chosen crystal-detector arrangement the X-ray wavelength range that corresponds to every detector bin physical positions limits.

Appendix B: The flux determination

The Bragg law describes the X-rays diffraction on the crystal. Unfortunately this law does not describe the complicated Bragg diffraction-interference perfectly. In the “real” case, the monochromatic X-ray beam become scattered after “reflection” from the crystal. The crystal rocking curve (see Fig. 11 ) shows the dependence between the reflection angle and the reflectivity, R:

$$R=\frac{I_{0}}{I} $$

where I and I 0 are the incident and diffracted fluxes respectively. The 𝜃𝜃 0 is the difference between the real reflected angle and the angle resulting from the Bragg law. The rocking curve for perfect crystals in the Bragg case has been discussed by many authors. A list of references may be found in books [e.g. 20, 49] or in the articles [4, 17] or [6]. The characteristic features of the rocking curve are the full width at half maximum (FWHM), the peak reflectivity (P c ) and the integral reflectivity (R c ):

$$\begin{array}{@{}rcl@{}} R_{c}(\theta)&=&\int\,R(\theta)\,d\theta=\int\,R(\theta(\lambda))\,\frac{d\theta}{d\lambda}d\lambda\\ &=&\int\,R(\lambda)\,\frac{d\theta}{d\lambda}d\lambda=\int\,R(\lambda)\frac{1}{2d\, \cos\,\theta}\,d\lambda\approx\frac{1}{2d \,\cos\,\theta}\int\,R(\lambda)\,d\lambda\\ &=&\frac{1}{2d \,\cos\,\theta}R_{c}(\lambda)=\frac{\sin\,\theta}{2d \,\cos\,\theta\, \sin\,\theta}R_{c}(\lambda)=\frac{\text{tg}\,\theta}{\lambda}R_{c}(\lambda) \end{array} $$
(32)
Fig. 11
figure 11

The rocking curve of the Si 111 bent crystal at energy 3800 eV (λ=3.26Å). It was obtained using XOP software [32]

Thus

$$ R_{c}(\lambda)=R_{c}(\theta)\lambda \text{ctg}\theta $$
(33)

To interpret the observing spectra we need to know the instrument response function, which will relate the rates [cts/s/bin] observed in each spectral bin into absolute fluxes units [photons/cm 2/s/Å]. Let us consider an infinitesimally small fragment of crystal of length dl in the dispersion plane and width W. This elements supplies the detector with the flux:

$$ dN=F E \,dA $$
(34)

here E is the efficiency function, that contain the instrument filters’ transmission function, the collimator transmission function and the detector efficiency. F is given by:

$$ F=\int\limits_{0}^{\infty} f(\lambda)R(\lambda)d\lambda $$
(35)

where f(λ) is the flux on-axis point source and R(λ) is the crystal reflectivity. d A is the area of the considered segment of crystal. For a point source on the line-of-sight we can write:

$$ dA=A_{0} \,\sin\,\theta=W\, dl\, \sin\,\theta $$
(36)

Because

$$ dl=rd\theta $$
(37)

and

$$ \frac{dl}{d\lambda}=\frac{r\, d\theta}{d\lambda}=\frac{r}{2d \,\cos\,\theta} $$
(38)

the area can be written as:

$$ dA=\frac{W \,r\, \sin\,\theta}{2d \,\cos\,\theta} d\lambda $$
(39)

We can therefore rewrite (34) as:

$$ dN=E \frac{W \,r\, \sin\,\theta}{2d\, \cos\,\theta} d\lambda \int\limits_{0}^{\infty} f(\lambda)R(\lambda)d\lambda $$
(40)

Equation (40) was used to calculate expected fluxes on the synthetic spectrum (see Fig. 4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siarkowski, M., Sylwester, J., Bąkała, J. et al. ChemiX: a Bragg crystal spectrometer for the Interhelioprobe interplanetary mission. Exp Astron 41, 327–350 (2016). https://doi.org/10.1007/s10686-016-9491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-016-9491-4

Keywords

Navigation