Skip to main content
Log in

SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5–175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bartlett, J.G., Stebbins, A.: Did the universe recombine? Astrophys. J. 371, 8–13 (1991)

    Article  ADS  Google Scholar 

  2. Bowman, J.D., Rogers, A.E.E.: A lower limit of Δz > 0.06 for the duration of the reionization epoch. Nature 468, 796–798 (2010)

    Article  ADS  Google Scholar 

  3. Burigana, C., Danese, L., de Zotti., G.: Formation and evolution of early distortions of the microwave background spectrum—A numerical study. Astron. Astrophys. 246, 49–58 (1991)

    ADS  Google Scholar 

  4. Burns, J.O., Lazio, J., Bale, S., Bowman, J., Bradley, R., Carilli, C., Furlanetto, S., Harker, G., Loeb, A., Pritchard, J.: Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE). Adv. Space Res. 49, 433–450 (2012)

    Article  ADS  Google Scholar 

  5. Chippendale, A.P.: Detecting cosmological reionization on large scales through the 21 cm HI line, pp. 1–204. Ph.D. Thesis, University of Sydney, School of Physics (2009)

  6. Clark, T.A., Brown, L.W., Alexander, J.K.: Spectrum of the extra-galactic background radiation at low radio frequencies. Nature 228, 847–849 (1970)

    Article  ADS  Google Scholar 

  7. Condon, J.J., Cotton, W.D., Fomalont, E.B., Kellermann, K.I., Miller, N., Perley, R.A., Scott, D., Vernstrom, T., Wall, J.V.: Resolving the radio source background: deeper understanding through confusion. Astrophys. J. 758, 23–36 (2012)

    Article  ADS  Google Scholar 

  8. Dicke, R.H., Peebles, P.J.E., Roll, P.G., Wilkinson, D.T.: Cosmic Black-Body radiation. Astrophys. J. 142, 414–419 (1965)

    Article  ADS  Google Scholar 

  9. Fan, X., Strauss, M.A., Becker, R.H., White, R.L., Gunn, J.E., Knapp, G.R., Richards, G.T., Schneider, D.P., Brinkmann, J., Fukugita, M.: Constraining the evolution of the ionizing background and the epoch of reionization with z 6 Quasars. II. A sample of 19 Quasars. Astron. J. 132, 117–136 (2006)

    Article  ADS  Google Scholar 

  10. Field, G.B.: Excitation of hydrogen 21-cm line. Proc. IRE 46, 240–250 (1958)

    Article  ADS  Google Scholar 

  11. Fixsen, D.J., Kogut, A., Levin, S., Limon, M., Lubin, P., Mirel, P., Seiffert, M., Singal, J., Wollack, E., Villela, T., Wuensche, C.A.: ARCADE 2 measurement of the absolute sky brightness at 3–90 GHz. Astrophys. J. 734, 5–11 (2009)

    Article  ADS  Google Scholar 

  12. Fornengo, N., Lineros, R., Regis, M., Taoso, M.: A dark matter interpretation for the ARCADE excess? Phys. Rev. Lett. 271302, 107 (2011)

    Google Scholar 

  13. Harker, G.J.A., Pritchard, J.R., Burns, J.O., Bowman, J.D.: An MCMC approach to extracting the global 21-cm signal during the cosmic dawn from sky-averaged radio observations. MNRAS 419, 1070–1084 (2012)

    Article  ADS  Google Scholar 

  14. Haslam, C.G.T., Salter, C.J., Stoffel, H., Wilson, W.E.: A 408 MHz all-sky continuum survey. II—The atlas of contour maps. Astron. Astrophys., Suppl. Ser. 47, 1–142 (1982)

    ADS  Google Scholar 

  15. Hinshaw, G., Larson, D., Komatsu, E., Spergel, D.N., Bennett, C.L., Dunkley, J., Nolta, M.R., Halpern, M., Hill, R.S., Odegard, N., Page, L., Smith, K.M., Weiland, J.L., Gold, B., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., Wollack, E., Wright, E.L.: Nine-Year Wilkinson Microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J., Suppl. Ser. (2013). ArXiv:1212.5226

  16. Jansky, K.G.: Radio waves from outside the solar system. Nature 132, 66 (1933)

    Article  ADS  Google Scholar 

  17. Kogut, A., Fixsen, D.J., Levin, S.M., Limon, M., Lubin, P.M., Mirel, P., Seiffert, M., Singal, J., Villela, T., Wollack, E., Wuensche, C.A.: ARCADE 2 observations of galactic radio emission. Astrophys. J. 734, 4–12 (2011)

    Article  ADS  Google Scholar 

  18. Landecker, T.L., Wielebinski, R.: The Galactic Metre Wave Radiation: A two-frequency survey between declinations +25° and −25° and the preparation of a map of the whole sky. Aust. J. Phys., Astrophys. Suppl. 16, 1–30 (1970)

    ADS  Google Scholar 

  19. Larson, D., Dunkley, J., Hinshaw, G., Komatsu, E., Nolta, M.R., Bennett, C.L., Gold, B., Halpern, M., Hill, R.S., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Page, L., Smith, K.M., Spergel, D.N., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Power spectra and WMAP-derived parameters. Astrophys. J. Suppl. Ser. 192, 16–34 (2011)

    Article  ADS  Google Scholar 

  20. Greenhill, L.J., Bernardi, G.: HI Epoch of Reionization Arrays. In: Komonjinda, S., Kovalev, Y., Ruffolo, D. (eds.) 11th Asian-Pacific Regional IAU Meeting 2011, NARIT Conference Series 1. Bangkok, NARIT (2012)

  21. de Oliveira-Costa, A., Tegmark, M., Gaensler, B.M., Jonas, J., Landecker, T.L., Reich, P.: A model of diffuse Galactic radio emission from 10 MHz to 100 GHz. MNRAS 388, 247–260 (2008)

    Article  ADS  Google Scholar 

  22. Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965)

    Article  ADS  Google Scholar 

  23. Pritchard, J.R., Loeb, A.: Evolution of the 21 cm signal throughout cosmic history. Phys. Rev. D 103511(1–16), 78 (2008)

    Google Scholar 

  24. Pritchard, J.R., Loeb, A.: Constraining the unexplored period between reionization and the dark ages with observations of the global 21 cm signal. Phys. Rev. D 82(023006), 1–12 (2010)

    Google Scholar 

  25. Raghunathan, A., Udaya Shankar, N., Subrahmanyan, R.: An octave bandwidth frequency independent dipole antenna. IEEE Trans. Antennas Propag. (2013, accepted)

  26. Rogers, A.E.E., Bowman, J.D.: Spectral index of the diffuse radio background measured from 100 to 200 MHz. Astron. J. 136, 641–648 (2008)

    Article  ADS  Google Scholar 

  27. Rogers, A.E.E., Bowman, J.D.: Absolute calibration of a wideband antenna and spectrometer for accurate sky noise temperature measurements. Radio Sci. 47, RS0K06 (2012). doi:10.1029/2011RS004962

    Article  Google Scholar 

  28. Shaver, P.A., Windhorst, R.A., Madau, P., de Bruyn., A.G.: Can the reionization epoch be detected as a global signature in the cosmic background? Astron. Astrophys. 345, 380–390 (1999)

    ADS  Google Scholar 

  29. Seiffert, M., Fixsen, D.J., Kogut, A., Levin, S.M., Limon, M., Lubin, P.M., Mirel, P., Singal, J., Villela, T., Wollack, E., Wuensche, C.A.: Interpretation of the ARCADE 2 absolute sky brightness measurement. Astrophys. J. 734, 6–13 (2011)

    Article  ADS  Google Scholar 

  30. Singal, J., Stawarz, L., Lawrence, A., Petrosian, V.: Sources of radio background considered. MNRAS 409, 1172–1182 (2010)

    Article  ADS  Google Scholar 

  31. Sunyaev, R.A., Zeldovich, Y.B.: The spectrum of primordial radiation, its distortions and their significance. Comments Astrophys. Space Phys. 2, 66–74 (1970)

    ADS  Google Scholar 

  32. Vernstrom, T., Scott, D., Wall, J.V.: Contribution to the diffuse radio background from extragalactic radio sources. MNRAS 415, 3641–3648 (2011)

    Article  ADS  Google Scholar 

  33. Wouthuysen, S.A.: On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31–32 (1952)

    Article  ADS  Google Scholar 

  34. Zahn, O., Reichardt, C.L., Shaw, L., Lidz, A., Aird, K.A., et al.: Cosmic microwave background constraints on the duration and timing of reionization from the south pole telescope. Astrophys. J. 756, 65–80 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The development of the SARAS concept has benefited greatly from the contemporaneous experimentation with implementations and trials of a variety of system configurations, which received outstanding support from staff of the Gauribidanur Radio Observatory and the Electronics Laboratory and Mechanical Engineering services at the Raman Research Institute. We thank Ron Ekers for his encouragement and participation in the effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Subrahmanyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, N., Subrahmanyan, R., Raghunathan, A. et al. SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization. Exp Astron 36, 319–370 (2013). https://doi.org/10.1007/s10686-013-9336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-013-9336-3

Keywords

Navigation