Skip to main content

Advertisement

Log in

PheniX: a new vision for the hard X-ray sky

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1–200 keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1–200 keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk–thermal emission–iron line–comptonisation–reflection–non-thermal emission–jets. Neutron stars–magnetic field–cyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines–direct measurement of magnetic filed–equation of state constraints–short bursts–giant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN’s. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20 keV). Element formation–Supernovae: The energy resolution achievable for this mission (<0.5 keV) and a large high energy effective area are ideally suited for the 44Ti line study (68 and 78 keV). This radioactive nuclei emission will give an estimate of their quantities and speed in their environment. In addition the study of the spatial structure and spectral emission of SNR will advance our knowledge of the dynamics of supernovae explosions, of particles acceleration mechanisms and how the elements are released in the interstellar medium. Instrumental design: The progress of X-ray focusing optics techniques allows a major step in the instrumental design: the collecting area becomes independent of the detection area. This drastically reduces the instrumental background and will open a new era. The optics will be based on depth-graded multi-layer mirrors in a Wolter I configuration. To obtain a significant effective area in the hundred of keV range a focal length in the 40–50 meters range (attainable with a deployable mast) is needed. In addition such a mission could benefit from recent progress made on mirror coating. We propose to cover the 1–200 keV energy range with a single detector, a double-sided Germanium strip detector operating at 80 K. The main features will be: (a) good energy resolution (.150 keV at 5 keV and <.5 keV at 100 keV), (b) 3 dimensional event localization with a low number of electronic chains, (c) background rejection by the 3D localization, (d) polarisation capabilities in the Compton regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Almeida, Pillet: Polarizing properties of grazing-incidence X-ray mirrors: comment. Appl. Opt. 32, 4231 (1993)

    Article  ADS  Google Scholar 

  2. Bassani, L., et al.: INTEGRAL/IBIS 7-year all-sky hard X-ray survey II. Catalog of sources. ApJ 669, L1 (2007)

    Article  ADS  Google Scholar 

  3. Becker, P.A., Wolff, M.T.: Thermal and bulk comptonization in accretion-powered X-ray pulsars. ApJ 654, 435 (2007)

    Article  ADS  Google Scholar 

  4. Bellotti, J.A., Windt, D.L.: Depth-graded Co/C multilayers prepared by reactive sputtering. SPIE 7437, 38 (2009)

    ADS  Google Scholar 

  5. Bianchi, et al.: CAIXA: a catalogue of AGN in the XMM-Newton archive. I. Spectral analysis. A&A 495, 421 (2009)

    Article  ADS  Google Scholar 

  6. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. MNRAS 179, 433 (1977)

    ADS  Google Scholar 

  7. Chauvin, M., Roques, J.P.: DynamiX, numerical tool for design of next-generation X-ray telescopes. Appl. Opt. 49, 4077 (2010)

    Article  Google Scholar 

  8. Collon, M.J., et al.: Performance of silicon pore optics. SPIE 7011, 7011 (2008)

    Google Scholar 

  9. Comastri, A.: ASSL 348, 245 (2004)

    ADS  Google Scholar 

  10. Dean, A.J., et al.: Polarized gamma-ray emission from the crab. Science 321, 1183 (2008)

    Article  ADS  Google Scholar 

  11. Droulans, R., et al.: Variability and spectral modeling of the hard X-ray emission of GX 339-4 in a bright low/hard state. ApJ 717, 1022 (2010)

    Article  ADS  Google Scholar 

  12. Fabian, A.C.: XMM-Newton and broad iron lines. AN 329, 155 (2008)

    ADS  Google Scholar 

  13. Ferrigno, C., et al.: Study of the accreting pulsar 4U 0115+63 using a bulk and thermal comptonization model. A&A 498, 825 (2009)

    Article  ADS  Google Scholar 

  14. Ghisellini, G., et al.: A theoretical unifying scheme for gamma-ray bright blazars. MNRAS 301, 451 (1998)

    Article  ADS  Google Scholar 

  15. Ghisellini, G.: Blazars in hard X-rays. AIP Conf. Proc. 1126, 131 (2009)

    Article  ADS  Google Scholar 

  16. Ghisellini, G., et al.: Chasing the heaviest black holes of jetted active galactic nuclei. MNRAS 405, 387 (2010)

    ADS  Google Scholar 

  17. Hailey, C.J., et al.: The Nuclear Spectroscopic Telescope Array (NuSTAR): optics overview and current status. SPIE 7732, 28 (2010)

    Google Scholar 

  18. Inderhees, et al.: Spectroscopy, imaging and compton-scatter polarimetry with a germanium strip detector. IEEE NSS(1995) 165 (1996)

  19. Katsuta, et al.: Evaluation of polarization characteristics of multilayer mirror for hard X-ray observation of astrophysical objects. Nucl. Instrum. Methods A 603, 393 (2009)

    Article  ADS  Google Scholar 

  20. Kroeger, et al.: Gamma ray polarimetry using a position sensitive germanium detector. Nucl. Instrum. Methods A 436, 165 (1999)

    Article  ADS  Google Scholar 

  21. Makishima, K., et al.: Suzaku results on cygnus X-1 in the low/hard state. PASJ 60, 585 (2008)

    ADS  Google Scholar 

  22. Mihara, et al.: Cyclotron observations of binary X-ray pulsars. Prog. Theor. Phys. Suppl. 169, 19 (2007)

    Article  Google Scholar 

  23. Miniutti, G., Fabian, A.C.: A light bending model for the X-ray temporal and spectral properties of accreting black holes. MNRAS 349, 1435 (2004)

    Article  ADS  Google Scholar 

  24. Narayan, R., Yi, I.: Advection-dominated accretion: a self-similar solution. ApJ 428, L13 (1994)

    Article  ADS  Google Scholar 

  25. Narayan, R., et al.: Estimating the spins of stellar-mass black holes by fitting their continuum spectra. AIPC 968, 265 (2008)

    ADS  Google Scholar 

  26. Nishimura, O.: Formation mechanism for broad and shallow profiles of cyclotron lines in accreting X-ray pulsars. ApJ 672, 1127 (2008)

    Article  ADS  Google Scholar 

  27. Petrucci, P.O., et al.: Unveiling the broad band X-ray continuum and iron line complex in Mrk 841. A&A 470, 889 (2007)

    Article  ADS  Google Scholar 

  28. Rossi, et al.: X-ray response of germanium microstrip detectors with energy and position resolution. Nucl. Instrum. Methods A 392, 264 (1997)

    Article  ADS  Google Scholar 

  29. Schnittman, J.D., Krolik, J.H.: X-ray polarization from accreting black holes: coronal emission. ApJ 712, 908 (2010)

    Article  ADS  Google Scholar 

  30. Stohlker, et al.: A 2D position sensitive germanium detector for spectroscopy and polarimetry of high-energetic X-rays. JPhCS 58, 411 (2007)

    ADS  Google Scholar 

  31. Tsygankov, S.S., et al.: Completing the puzzle of the 2004–2005 outburst in V0332+53: the brightening phase included. MNRAS 401, 1628 (2010)

    Article  ADS  Google Scholar 

  32. Turner, T.J., Miller, L.: X-ray absorption and reflection in active galactic nuclei. A&ARv 17, 47 (2009)

    Article  ADS  Google Scholar 

  33. Volonteri, M.: Evolution of massive black hole spins. Proc of the Conference Accretion and Ejection in AGNs. arXiv:1002.3827 (2010)

  34. Weisskopf, et al.: The prospects for X-ray polarimetry and its potential use for understanding neutron stars. 363rd Heraeus Seminar in Bad Honef, Germany. arXiv:astro-ph/0611483 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Roques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roques, JP., Jourdain, E., Bassani, L. et al. PheniX: a new vision for the hard X-ray sky. Exp Astron 34, 489–517 (2012). https://doi.org/10.1007/s10686-011-9236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9236-3

Keywords

Navigation