Skip to main content

Advertisement

Log in

Folate profile diversity and associated SNPs using genome wide association study in pea

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Folates are important metabolic cofactors essential for human growth and development. Eighty-five accessions from a pea genome wide association study (GWAS) panel were evaluated for folate profile using ultra-performance liquid chromatography coupled with mass spectrometry. A GWAS was conducted to identify SNP markers associated with the folate profile of pea. Five folates were quantified and the sum of folates ranged from 14 to 55 µg/100 g dry weight. Significant differences (P < 0.001) were observed among the accessions for all folates. The pea accessions were genotyped using genotyping-by-sequencing. After filtering for a read depth of five and minor allele frequency of 0.05, 14,391 SNPs were used for marker-trait association. Five SNP markers were significantly (P < 0.01) associated with the sum of folates. Fifteen, eight, and three SNP markers were associated with 5-methyltetrahydrofolate (5-MTHF), 5-formyltetrahydrofolate, and tetrahydrofolate, respectively. Based on associated SNP markers, an additional 24 accessions were evaluated for folate profile, and those predicted to have a relatively high folate concentration had a significantly greater concentration of 5-MTHF and the sum of folates than those predicted to have a lower concentration. In these accessions, Sc_6992_86348 and Sc_3060_11265 were significantly associated with 5-MTHF and the sum of folates in Saskatoon 2016. Six SNP markers were converted into KASP markers, and these can be used for marker-assisted selection in pea breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Ferrari B, Wei Y, Brummer EC (2017) GBS-based genomic selection for pea grain yield under severe terminal drought. Plant Genome. https://doi.org/10.3835/plantgenome2016.07.0072

    Article  PubMed  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K et al (2005) Genome wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60

    PubMed  PubMed Central  Google Scholar 

  • Ates D, Sever T, Aldemir S, Yagmur B, Temel HY, Kaya HB et al (2016) Identification QTLs controlling genes for se uptake in lentil seeds. PLoS ONE 11(3):e0149210

    PubMed  PubMed Central  Google Scholar 

  • Bailey LB, Gregory JF (1999) Folate metabolism and requirements. J Nutr 129:779–782

    CAS  PubMed  Google Scholar 

  • Basset GJC, Quinlivan EP, Gregory JF, Hanson AD (2005) Folate synthesis and metabolism in plants and prospects for biofortification. Crop Sci 45:449–453

    CAS  Google Scholar 

  • Blancquaert D, De Steur H, Gellynck X, Van Der Straeten D (2014) Present and future of folate biofortification of crop plants. J Exp Bot 65:895–906

    CAS  PubMed  Google Scholar 

  • Bouis HE (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494S

    CAS  PubMed  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Suppl. 1):31S–40S

    Google Scholar 

  • Boutet G, Carvalho SA, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Baranger A (2016) SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genomics 17:121

    PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Camara JE, Lowenthal MS, Phinney KW (2013) Determination of fortified and endogenous folates in food-based standard reference materials by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 405:4561–4568

    CAS  PubMed  Google Scholar 

  • Chew SC, Loh SP, Khor GL (2012) Determination of folate content in commonly consumed Malaysian foods. Int Food Res J 19:189–197

    CAS  Google Scholar 

  • Choi SW, Friso S (2005) Interactions between folate and aging for carcinogenesis. Clin Chem Lab Med 43:1151–1157

    CAS  PubMed  Google Scholar 

  • De Brouwer V, Storozhenko S, Van De Steene JC, Wille SM, Stove CP, Van Der Straeten D, Lambert WE (2008) Optimisation and validation of a liquid chromatography- tandem mass spectrometry method for folates in rice. J Chromatogr A 1215:125–132

    PubMed  Google Scholar 

  • De Brouwer V, Storozhenko S, Stove CP, Van Daele J, Van der Straeten D, Lambert WE (2010) Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) for the sensitive determination of folates in rice. J Chromatogr B 878:509–513

    Google Scholar 

  • Desgroux A, L’anthoëne V, Roux-Duparque M, Rivière JP, Aubert G, Tayeh N et al (2016) Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17:124

    PubMed  PubMed Central  Google Scholar 

  • Diapari M, Sindhu A, Bett K, Deokar A, Warkentin TD, Tar’an B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:459–468

    CAS  PubMed  Google Scholar 

  • Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35:30

    Google Scholar 

  • Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L et al (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics 15:126

    PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Ascochyta pinodes in Pisum sativum subsp. syriacum. Mol Breed 21:439–454

    CAS  Google Scholar 

  • Gali KK, Liu Y, Sindhu A, Diapari M, Shunmugam ASK, Arganosa G et al (2018) Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol 18:172

    PubMed  PubMed Central  Google Scholar 

  • Gali KK, Sackville A, Tafesse EG, Lachagari RVB, McPhee K, Hybl M et al (2019a) Association mapping for agronomic traits of field pea. In: Plant and animal genomics Jan 12–16, 2019, San Diego, USA

  • Gali KK, Sackville A, Tafesse EG, Lachagari RVB, McPhee KE, Hybl M et al (2019b) Genome-wide association mapping for agronomic and seed quality traits of field pea (Pisum sativum L.). Front Plant Sci. https://doi.org/10.3389/fpls.2019.01538

    Article  PubMed  PubMed Central  Google Scholar 

  • Geisel J (2003) Folic acid and neural tube defects in pregnancy—a review. J Perinat Neonatal Nurs 17:268–279

    PubMed  Google Scholar 

  • Han JY, Tyler RT (2003) Determination of folate concentrations in pulses by a microbiological method employing trienzyme extraction. J Agric Food Chem 51:5315–5318

    CAS  PubMed  Google Scholar 

  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137

    CAS  PubMed  Google Scholar 

  • Hefni M, Ohrvik V, Tabekha MM, Witthoft C (2010) Folate content in foods commonly consumed in Egypt. Food Chem 121:540–545

    CAS  Google Scholar 

  • Henderson GI, Perez T, Schenker S, Mackins J, Antony AC (1995) Maternal-to-fetal transfer of 5-methyltetrahydrofolate by the perfused human placental cotyledon: evidence for a concentrative role by placental folate receptors in fetal folate delivery. J Lab Clin Med 126:184–203

    CAS  PubMed  Google Scholar 

  • Jha AB, Ashokkumar K, Diapari M, Ambrose SJ, Zhang H, Tar’an B et al (2015) Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. J Food Compost Anal 42:134–140

    CAS  Google Scholar 

  • Khanal S, Xue J, Khanal R, Xie W, Shi J, Pauls KP, Navabi A (2013) Quantitative trait loci analysis of folate content in dry beans, Phaseolus vulgaris L. Int J Agron 2013:1–9

    Google Scholar 

  • Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T et al (2015) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162

    PubMed  PubMed Central  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M et al (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161

    PubMed  PubMed Central  Google Scholar 

  • Li YX, Li C, Bradbury PJ, Liu X, Lu F, Romay CM et al (2016) Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J 86:391–402

    CAS  PubMed  Google Scholar 

  • Mao H, Wang H, Liu S, Li Z, Yang X, Yan J et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, Wright MH, Tung CW, Maron LG, McNally KL, Fitzgerald M (2016) Open access resources for genome-wide association mapping in rice. Nat Commun 7:10532

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCully KS (2007) Homocysteine, vitamins, and vascular disease prevention. Am J Clin Nutr 86:1563S–1568S

    CAS  PubMed  Google Scholar 

  • Mönch S, Rychlik M (2012) Improved folate extraction and tracing deconjugation efficiency by dual label isotope dilution assays in foods. J Agric Food Chem 60:1363–1372

    PubMed  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 8:1795–1806

    Google Scholar 

  • Perseguini JM, Oblessuc PR, Rosa JR, Gomes KA, Chiorato AF, Carbonell SA et al (2016) Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.). PLoS ONE 11:e0150506

    PubMed  PubMed Central  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Ascochyta pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ringling C, Rychlik M (2013) Analysis of seven folates in food by LC–MS/MS to improve accuracy of total folate data. Eur Food Res Technol 236:17–28

    CAS  Google Scholar 

  • Rychlik M, Englert K, Kapfer S, Kirchhoff E (2007) Folate contents of legumes determined by optimized enzyme treatment and stable isotope dilution assays. J Food Compos Anal 20:411–419

    CAS  Google Scholar 

  • Scholl TO, Johnson WG (2000) Folic acid: influence on the outcome of pregnancy. Am J Clin Nutr 71(5 Supplement):1295S–1303S

    CAS  PubMed  Google Scholar 

  • Scott J, Rébeillé F, Fletcher J (2000) Folic acid and folate: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 80:795–824

    CAS  Google Scholar 

  • Sen Gupta D, Thavarajah D, Thavarajah P, McGee R, Coyne CJ, Kumar S (2013) Lentils (Lens culinaris L.), a rich source of folates. J Agric Food Chem 61:7794–7799

    CAS  PubMed  Google Scholar 

  • Shohag MJI, Yang Q, Wei Y, Zhang J, Khan FZ, Rychlik M et al (2017) A rapid method for sensitive profiling of folates from plant leaf by ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometer. J Chromatogr B 1040:169–179

    CAS  Google Scholar 

  • Shrestha AK, Arcot J, Paterson J (2000) Folate assay of foods by traditional and trienzyme treatments using cryoprotected Lactobacillus casei. Food Chem 71:545–552

    CAS  Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J et al (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H et al (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Balde S et al (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to ascochyta blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491

    PubMed  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS ONE 9:e96758

    PubMed  PubMed Central  Google Scholar 

  • Vishnumohan S, Arcot J, Pickford R (2011) Naturally occurring folates in foods: method development and analysis using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Food Chem 125:736–742

    CAS  Google Scholar 

  • Wang N, Wang ZP, Liang XL, Weng JF, Lv XL, Zhang DG et al (2016) Identification of loci contributing to maize drought tolerance in a genome-wide association study. Euphytica 210:165–179

    CAS  Google Scholar 

  • Warkentin TD, Vandenberg A, Tar’an B, Banniza S, Arganosa G, Barlow B et al (2014) CDC Amarillo yellow field pea. Can J Plant Sci 94:1539–1541

    Google Scholar 

  • Wong MM, Gujaria-Verma N, Ramsay L, Yuan HY, Caron C, Diapari M et al (2015) Classification and characterization of species within the genus Lens using genotyping-by-sequencing (GBS). PLoS ONE 10:e0122025

    PubMed  PubMed Central  Google Scholar 

  • Yu CS, Lin CJ, Hwang JK (2004a) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13:1402–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K, Gu CC, Province M, Xiong CJ, Rao DC (2004b) Genetic association mapping under founder heterogeneity via weighted haplotype similarity analysis in candidate genes. Genet Epidemiol 27:182–191

    CAS  PubMed  Google Scholar 

  • Zhang H, Jha AB, Warkentin TD, Vandenberg A, Purves RW (2018) Folate stability and method optimization for folate extraction from seeds of pulse crops using LC–SRM MS. J Food Compos Anal 71:44–55

    CAS  Google Scholar 

  • Zhang H, Jha AB, De Silva D, Purves RW, Warkentin TD, Vandenberg A (2019) Improved folate monoglutamate extraction and application to folate quantification from wild lentil seeds by ultra-performance liquid chromatography-selective reaction monitoring mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1121:39–47

    CAS  PubMed  Google Scholar 

  • Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the NSERC Industrial Research Chair in Lentil Genetic Improvement, the Saskatchewan Pulse Growers, and the Saskatchewan Ministry of Agriculture. We are thankful to Thermo Fisher for the use of the TSQ Vantage as part of a collaboration between the University of Saskatchewan and Thermo Fisher. We are also thankful to the pulse crop breeding staff at the University of Saskatchewan for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Warkentin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A.B., Gali, K.K., Zhang, H. et al. Folate profile diversity and associated SNPs using genome wide association study in pea. Euphytica 216, 18 (2020). https://doi.org/10.1007/s10681-020-2553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-2553-8

Keywords

Navigation