Skip to main content
Log in

Identification of QTLs related to cadmium tolerance from wild rice (Oryza nivara) using a high-density genetic map for a set of introgression lines

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a toxic heavy metal that is harmful to human health. Oryza nivara, a wild rice species, serves as a germplasm pool for various favorable genes that can be used in cultivated rice. To detect quantitative trait loci (QTLs) and germplasm related to Cd tolerance in O. nivara, we analyzed one set of introgression lines with a high-density genetic map. Seven QTLs related to Cd tolerance were identified on chromosomes 2, 4, 6, and 8, and an allele of one locus (Bin774) from O. nivara affected two phenotypic traits and was able to increase Cd tolerance in rice. In a further analysis of GeneChip data released by the National Center for Biotechnology Information, we explored five candidate genes induced by Cd stress in the QTL region: two oxidoreductase genes (aldo-keto reductase genes LOC_Os04g27060 and LOC_Os04g26920); one terpene synthase gene (LOC_Os04g27190); one cysteine-rich receptor-like protein kinase gene (LOC_Os04g25060); and one serine carboxypeptidase homolog gene OsSCP23 (LOC_Os04g25560). One Cd-tolerant introgression line (Ra44) was also obtained, with a significantly higher survival rate under Cd stress (93.8%) compared to recipient parent 93-11 (2.3%). Identification of candidate genes and the Cd-tolerant introgression line Ra44 should facilitate further investigation of the mechanism of rice tolerance to Cd contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamoto T, Yano M, Ishikawa S (2013) Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. Breed Sci 63(3):284–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojarvi J, Rayapuram C, Idanheimo N, Hunter K, Kimura S, Merilo E, et al (2015) Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet 11(7):e1005373

    PubMed  PubMed Central  Google Scholar 

  • Capra E, Colombi C, De Poli P, Nocito FF, Cocucci M, Vecchietti A, Marocco A, Stile MR, Rossini L (2015) Protein profiling and tps23 induction in different maize lines in response to methyl jasmonate treatment and Diabrotica virgifera infestation. J Plant Physiol 175:68–77

    CAS  PubMed  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    CAS  PubMed  Google Scholar 

  • Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao FJ (2017) Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice 10(1):9

    PubMed  PubMed Central  Google Scholar 

  • Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, et al (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genom 11:648

    Google Scholar 

  • Gao F, Liu B, Li M, Gao X, Fang Q, Liu C, Ding H, Wang L, Gao X (2018) Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of freesia × hybrida. J Exp Bot 69(18):4249–4265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao X, Zeng M, Wang J, Zeng Z, Dai J, Xie Z, Yang Y, Tian L, Chen L, Li D (2018) A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front Plant Sci 9:476

    PubMed  PubMed Central  Google Scholar 

  • Hegedüs A, Erdei S, Janda T, Tóth E, Horváth G, Dudits D (2004) Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Sci 166(5):1329–1333

    Google Scholar 

  • Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L (2017) OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Sci 264:1–8

    CAS  PubMed  Google Scholar 

  • Huang Y, Sun C, Min J, Chen Y, Tong C, Bao J (2015) Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J Agric Food Chem 63(50):10885–10892

    CAS  PubMed  Google Scholar 

  • Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61(3):923–934

    CAS  PubMed  Google Scholar 

  • Ishikawa S, Ae N, Yano M (2005) Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol 168(2):345–350

    CAS  PubMed  Google Scholar 

  • Kanayama Y, Mizutani R, Yaguchi S, Hojo A, Ikeda H, Nishiyama M, Kanahama K (2014) Characterization of an uncharacterized aldo-keto reductase gene from peach and its role in abiotic stress tolerance. Phytochemistry 104:30–36

    CAS  PubMed  Google Scholar 

  • Kollner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70(9):1139–1145

    PubMed  Google Scholar 

  • Kumar D, Singh P, Yusuf MA, Upadhyaya CP, Roy SD, Hohn T, Sarin NB (2013) The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage. Mol Biotechnol 54(2):292–303

    CAS  PubMed  Google Scholar 

  • Kunihiro S, Kowata H, Kondou Y, Takahashi S, Matsui M, Berberich T, Youssefian S, Hidema J, Kusano T (2014) Overexpression of rice OsREX1-S, encoding a putative component of the core general transcription and DNA repair factor IIH, renders plant cells tolerant to cadmium- and UV-induced damage by enhancing DNA excision repair. Planta 239(5):1101–1111

    CAS  PubMed  Google Scholar 

  • Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C (2017) AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiol Plant 160(3):312–327

    PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175(1):361–374

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Tang L, Qiu J, Zhang W, Wang Y, Tong X, Wei X, Hou Y, Zhang J (2016) Serine carboxypeptidase 46 regulates grain filling and seed germination in rice (Oryza sativa L.). PLoS One 11(7):e0159737

    PubMed  PubMed Central  Google Scholar 

  • Lim SD, Hwang JG, Han AR, Park YC, Lee C, Ok YS, Jang CS (2014) Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes. Plant Mol Biol 85(4–5):365–379

    CAS  PubMed  Google Scholar 

  • Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420(1):57–65

    CAS  PubMed  Google Scholar 

  • Lu K, Liang S, Wu Z, Bi C, Yu YT, Wang XF, Zhang DP (2016) Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. J Exp Bot 67(17):5009–5027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B et al (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9(1):645

    PubMed  PubMed Central  Google Scholar 

  • Ma X, Fu Y, Zhao X, Jiang L, Zhu Z, Gu P, Xu W, Su Z, Sun C, Tan L (2016) Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Sci Rep 6:27425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, et al (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189(1):190–199

    CAS  PubMed  Google Scholar 

  • Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes RK, Papadopoulou K, Melton R, Philo M, Sainsbury F, et al (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21(8):2473–2484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469

    CAS  Google Scholar 

  • Pathare V, Srivastava S, Sonawane BV, Suprasanna P (2016) Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice. Physiol Mol Biol Plants 22(4):515–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puig J, Meynard D, Khong GN, Pauluzzi G, Guiderdoni E, Gantet P (2013) Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. Gene Expr Patterns 13(5–6):160–170

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res Int 23(18):17859–17879

    CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65(20):6013–6021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53(1):213–224

    CAS  PubMed  Google Scholar 

  • Sun L, Xu X, Jiang Y, Zhu Q, Yang F, Zhou J, Yang Y, Huang Z, Li A, Chen L, et al (2016) Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice. Front Plant Sci 7:1407

    PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35(11):1948–1957

    CAS  PubMed  Google Scholar 

  • Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, et al (2010) A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120(6):1175–1182

    CAS  PubMed  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1):W122–W129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009a) A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol 182(3):644–653

    CAS  PubMed  Google Scholar 

  • Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009b) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50(12):2223–2233

    CAS  PubMed  Google Scholar 

  • Ueno D, Koyama E, Yamaji N, Ma JF (2011) Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J Exp Bot 62(7):2265–2272

    CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107(38):16500–16505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108(52):20959–20964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, He Z, Luo L, Zhao X, Lu Z, Luo T, Li M, Zhang Y (2018) An aldo-keto reductase, Bbakr1, is involved in stress response and detoxification of heavy metal chromium but not required for virulence in the insect fungal pathogen, Beauveria bassiana. Fungal Genet Biol 111:7–15

    CAS  PubMed  Google Scholar 

  • Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Ma JF (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162(2):927–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang C, Salt D, Zhao F (2016) A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ 39(9):1941–1954

    CAS  PubMed  Google Scholar 

  • Yang T, Yao S, Hao L, Zhao Y, Lu W, Xiao K (2016) Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep 35(11):2309–2323

    CAS  PubMed  Google Scholar 

  • Zhao F, Ma Y, Zhu Y, Tang Z, McGrath S (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49(2):750–759

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31671647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxia Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Supplementary material 2 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Chen, X., Zhao, J. et al. Identification of QTLs related to cadmium tolerance from wild rice (Oryza nivara) using a high-density genetic map for a set of introgression lines. Euphytica 215, 205 (2019). https://doi.org/10.1007/s10681-019-2522-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2522-2

Keywords

Navigation