Skip to main content
Log in

Drought stress tolerance in common bean: what about highly cultivated Brazilian genotypes?

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Drought stress on reproductive stages constitute a major problem for common bean (Phaseolus vulgaris L.) production because it affects flowering and pod-filling processes which are highly drought-sensitive. In this study, we used a greenhouse experiment to evaluate the response to drought stress in ten highly cultivated Brazilian genotypes in response to moderate intermittent drought during flowering and pod-filling periods (R7 and R8 stages). Morphological, biochemical, physiological and agronomic traits were used to identify tolerant cultivars and elucidate their strategies to cope this stress. The drought intensity index for the experiment reached 0.63. The cultivar IAC Imperador can be defined as a tolerant cultivar, presenting the lowest grain yield reduction (43%) and a reduced drought susceptibility index (0.65). This cultivar elevated their level of proline in roots under stress, which allowed the osmotic adjustment and the maintenance of an intermediate stomata closure during the day, which maintained the intrinsic WUE stable in NS and DS conditions. In addition, this cultivar was able to mobilize the assimilated carbon for the production of pods and grains, evidenced by the high harvest index and the high grain filling index. In this way, IAC Imperador can be used as a check in breeding programs to identify and select lineages with drought tolerance in common bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

100GW:

100 grains dry weight

ABA:

Abscisic acid

A N :

Net CO2 assimilation rate

C i :

Leaf internal CO2 concentration

CO2 :

Carbon dioxide

DAE:

Days after emergency

DII:

Drought intensity index

DS:

Drought-stressed

DSI:

Drought susceptibility index

DTI:

Drought tolerance index

E :

Transpiration rate

EUW:

Effective use of water

FGP:

Number of failed grains per pod

GFI:

Grain filling index

GMP:

Geometric mean productivity

g S :

Stomatal conductance

GY:

Grain yield per plant

HI:

Harvest index

Ψw:

Water potential

iWUE:

Intrinsic water use efficiency

LSR:

Leaf stem ratio

MP:

Mean productivity

NS:

Non-stressed

NGP:

Number of grains per pod

NPP:

Number of pods per plant

RCBD:

Randomized complete block design

WUE:

Water use efficiency

WUEinst:

Instantaneous WUE

YRR:

Yield reduction rate

YSI:

Yield stability index

References

  • Ambachew D, Mekbib F, Asfaw A, Beebe SE, Blair MW (2015) Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly. Crop J 3:305–316. doi:10.1016/j.cj.2015.01.006

    Article  Google Scholar 

  • Andrade ER, Ribeiro VN, Azevedo CV, Chiorato AF, Williams TC, Carbonell SA (2016) Biochemical indicators of drought tolerance in the common bean (Phaseolus vulgaris). Euphytica 210(2):277–289. doi:10.1007/s10681-016-1720-4

    Article  CAS  Google Scholar 

  • Asfaw A, Blair MW (2014) Quantification of drought tolerance in Ethiopian common bean varieties. Agric Sci 5:124–139. doi:10.4236/as.2014.52016

    Google Scholar 

  • Assefa T, Wu J, Beebe SE, Rao IM, Marcomin D, Claude RJ (2015) Improving adaptation to drought stress in small red common bean: phenotypic differences and predicted genotypic effects on grain yield, yield components and harvest index. Euphytica 203(3):477–489. doi:10.1007/s10681-014-1242-x

    Article  CAS  Google Scholar 

  • Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592. doi:10.2135/cropsci2007.07.0404

    Article  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:35. doi:10.3389/fphys.2013.00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Galeano CH, Tovar E, Torres MCM, Castrillon AV, Beebe SE, Rao IM (2012) Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Mol Breeding 29:71–88. doi:10.1007/s11032-010-9527-9

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112(2):119–123. doi:10.1016/j.fcr.2009.03.009

    Article  Google Scholar 

  • Blum A (2015) Towards a conceptual ABA ideotype in plant breeding for water limited environments. Funct Plant Biol 42(6):502–513. doi:10.1071/FP14334

    Article  CAS  Google Scholar 

  • Bouslama M, Schapaugh WT (1984) Stress tolerance in soybean: 1. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci 24:933–937

    Article  Google Scholar 

  • Boyle RK, McAinsh M, Dodd IC (2016) Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying. Physiol Plant 156(1):84–96. doi:10.1111/ppl.12346

    Article  CAS  PubMed  Google Scholar 

  • CGIAR—Consultative Group for International Agricultural Research (2016). http://www.cgiar.org/our-strategy/crop-factsheets/beans/

  • Chai Q, Gan Y, Zhao C, Xu HL, Waskom RM, Niu Y, Siddique KH (2016) Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev 36(1):1–21. doi:10.1007/s13593-015-0338-6

    Article  Google Scholar 

  • Chiorato AF, Carbonell SAM, Carvalho CRL, Barros VLNPD, Borges WLB, Ticelli M, Gallo PB, Finoto EL, Santos NCBD (2012) ‘IAC IMPERADOR’: early maturity” carioca” bean cultivar. Crop Breed Appl Biotechnol 12(4):297–300. doi:10.1590/S1984-70332012000400012

    Article  Google Scholar 

  • CONAB (2015) Acompanhamento da safra brasileira de grãos. V-3 Safra 2015/2016—N 3—Terceiro levantamento. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/16_01_12_09_00_46_boletim_graos_janeiro_2016.pdf

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55(407):2447–2460. doi:10.1093/jxb/erh277

    Article  CAS  PubMed  Google Scholar 

  • Cruz CD (2013) Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35(3):271–276. doi:10.4025/actasciagron.v35i3.21251

    Article  Google Scholar 

  • Cuellar-Ortiz SM, Arrieta-Montiel MP, Acosta-Gallegos JA, Covarrubias AA (2008) Relationship between carbohydrate partitioning and drought resistance in common bean. Plant, Cell Environ 31(10):1399–1409. doi:10.1111/j.1365-3040.2008.01853.x

    Article  Google Scholar 

  • Darkwa K, Ambachew D, Mohammed H, Asfaw A, Blair MW (2016) Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. Crop J 4(5):367–376. doi:10.1016/j.cj.2016.06.007

    Article  Google Scholar 

  • Daryanto S, Wang L, Jacinthe P-A (2015) Global synthesis of drought effects on food legume production. PLoS ONE 10(6):e0127401. doi:10.1371/journal.pone.0127401

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2015) About the international year of pulses. http://www.fao.org/pulses-2016/en/

  • FAOSTAT (2014) Glossary. http://faostat.fao.org/site/375/default.aspx

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi:10.1051/agro:2008021

    Article  Google Scholar 

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS, Siddique KHM (2016) Drought stress in grain legumes during reproduction and grain filling. J Agro Crop Sci 203(2): 81–102. doi:10.1111/jac.12169

    Article  Google Scholar 

  • Fernández F, Gepts P, Lopez M (1982) Etapas de desarrollo de la planta de frijol común. Centro Internacional de Agricultura Tropical, Cali

    Google Scholar 

  • Fischer R, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Crop Pasture Sci 29:897–912

    Article  Google Scholar 

  • Flexas J (2016) Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success? Plant Sci 251:155–161. doi:10.1016/j.plantsci.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35(7):2015–2036. doi:10.1007/s11738-013-1239-4

    Article  CAS  Google Scholar 

  • Heinemann AB, Ramirez-Villegas J, Souza TLP, Didonet AD, Di Stefano JG, Boote KJ, Jarvis A (2016) Drought impact on rainfed common bean production areas in Brazil. Agric For Meteorol 225:57–74. doi:10.1016/j.agrformet.2016.05.010

    Article  Google Scholar 

  • Kijne JW, Barker R, Molden DJ (eds) (2003) Water productivity in agriculture: limits and opportunities for improvement. CABI, London, p 332

    Google Scholar 

  • Kishor K, Polavarapu B, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell Environ 37(2):300–311. doi:10.1111/pce.12157

    Article  Google Scholar 

  • Lanna AC, Mitsuzono ST, Terra TGR, Vianello RP, de Figueiredo Carvalho MA (2016) Physiological characterization of common bean (Phaseolus vulgaris L.) genotypes, water-stress induced with contrasting response towards drought. Aust J Crop Sci 10(1):1

    Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York, p 698

    Google Scholar 

  • Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, Rosselló J, Pou A, Escalona J-M, Bota J (2015) From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. Crop J 3(3):220–228. doi:10.1016/j.cj.2015.04.002

    Article  Google Scholar 

  • Moda-Cirino V, Oliari L, Lollato MA, Fonseca Júnior NS (2001) IPR88 Uirapuru -common bean. Crop Breed Appl Biotechnol 1:205–206

    Article  Google Scholar 

  • Molina JC, Moda-Cirino V, Júnior NDSF, Faria RT, Destro D (2001) Response of common bean cultivars and lines to water stress. Crop Breed Appl Biotechnol 1(4):363–372

    Article  Google Scholar 

  • Müller BSF, Sakamoto T, Silveira RDD, Zambussi-Carvalho PF, Pereira M, Pappas GJ Jr, Costa MMC, Guimarães CM, Pereira WJ, Brondani C, Vianello-Brondani RP (2014) Differentially expressed genes during flowering and grain filling in common bean (Phaseolus vulgaris) grown under drought stress conditions. Plant Mol Biol Report 32(2):438–451. doi:10.1007/s11105-013-0651-7

    Article  Google Scholar 

  • Muñoz-Perea CG, Terán H, Allen RG, Wright JL, Westermann DT, Singh SP (2006) Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46(5):2111–2120. doi:10.2135/cropsci2006.01.0029

    Article  Google Scholar 

  • Mwenye OJ, van Rensburg L, van Biljon A, van der Merwe R (2016) The role of proline and root traits on selection for drought stress tolerance in soybeans: a review. S Afr J Plant Soil 33(4):1–12. doi:10.1080/02571862.2016.1148786

    Article  Google Scholar 

  • Namugwanya M, Tenywa JS, Otabbong E, Mubiru DN, Masamba TA (2014) Development of common bean (Phaseolus vulgaris L.) production under low soil phosphorus and drought in Sub-Saharan Africa: a review. J Sustain Dev 7(5):128. doi:10.5539/jsd.v7n5p128

    Article  Google Scholar 

  • Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J. doi:10.1155/2013/610721

    Google Scholar 

  • Omae H, Kumar A, Shono M (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot. Article ID 803413. doi:10.1155/2012/803413

  • Oya T, Nepomucemo AL, Neumaier N, Farias JRB, Tobita S, Ito O (2004) Drought tolerance characteristics of Brazilian soybean cultivars: evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod Sci 7(2):129–137

    Article  Google Scholar 

  • Pérez-Vega JC, Blair MW, Monserrate F, Ligarreto GM (2011) Evaluation of an Andean common bean reference collection under drought stress. Agronomía Colombiana 29(1):17–26

    Google Scholar 

  • Polania JA, Poschenrieder C, Beebe S, Rao IM (2016a) Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Front Plant Sci. doi:10.3389/fpls.2016.00660

    PubMed  PubMed Central  Google Scholar 

  • Polania J, Rao IM, Cajiao C, Rivera M, Raatz B, Beebe S (2016b) Physiological traits associated with drought resistance in Andean and Mesoamerican genotypes of common bean (Phaseolus vulgaris L.). Euphytica 210(1):17–29. doi:10.1007/s10681-016-1691-5

    Article  CAS  Google Scholar 

  • Ramirez-Vallejo P, Kelly JD (1998) Traits related to drought resistance in common bean. Euphytica 99:127–136

    Article  Google Scholar 

  • Rao DE, Chaitanya KV (2016) Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant 60(2):201–218. doi:10.1007/s10535-016-0584-8

    Article  CAS  Google Scholar 

  • Rao I, Beebe S, Polania J, Ricaurte J, Cajiao C, Garcia R, Rivera M (2013) Can tepary bean be a model for improvement of drought resistance in common bean? Afr Crop Sci J 21:265–281

    Google Scholar 

  • Rosales MA, Ocampo E, Rodríguez-Valentín R, Olvera-Carrillo Y, Acosta-Gallegos J, Covarrubias AA (2012) Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem 56:24–34. doi:10.1016/j.plaphy.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  • Rosales MA, Cuellar-Ortiz SM, Arrieta-Montiel MP, Acosta-Gallegos J, Covarrubias AA (2013) Physiological traits related to terminal drought resistance in common bean (Phaseolus vulgaris L.). J Sci Food Agric 93:324–331. doi:10.1002/jsfa.5761

    Article  CAS  PubMed  Google Scholar 

  • Rosielle AA, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci 21(6):943–946

    Article  Google Scholar 

  • Scholander P, Hammel H, Bradstreet EY, Hemmingsen E (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS ONE 7(6):e38554. doi:10.1371/journal.pone.0038554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Teran H, Gutierrez AJ (2001) Registration of SEA 5 and SEA 13 drought tolerant dry bean germplasm. Crop Sci 41(1):276

    Article  Google Scholar 

  • Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Global explicit profiling of water deficit-induced diminutions in agricultural crop sustainability: key emerging trends and challenges., Water stress and crop plants: a sustainable approachWiley, Chichester

    Book  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. doi:10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Szilagyi L (2003) Influence of drought on seed yield components in common bean. Bulg J Plant Physiol 9:320–330

    Google Scholar 

  • Terán H, Singh SP (2002) Selection for drought resistance in early generations of common bean populations. Can J Plant Sci 82(3):491–497. doi:10.4141/P01-134

    Article  Google Scholar 

  • Tombesi S, Nardini A, Tommaso F, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2016) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449. doi:10.1038/srep12449

    Article  Google Scholar 

  • Villordo-Pineda E, González-Chavira MM, Giraldo-Carbajo P, Acosta-Gallegos JA, Caballero-Pérez J (2015) Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris). Front Plant Sci. doi:10.3389/fpls.2015.00546

    PubMed  PubMed Central  Google Scholar 

  • Voleníková M, Tichá I (2001) Insertion profiles in stomatal density and sizes in Nicotiana tabacum L. plantlets. Biol Plant 44:161–165

    Article  Google Scholar 

  • White JW, Castillo JA (1992) Evaluation of diverse shoot genotypes on selected root genotypes of common bean under soil water deficits. Crop Sci 32:762–765

    Article  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell Environ 33(4):510–525. doi:10.1111/j.1365-3040.2009.02052.x

    Article  CAS  Google Scholar 

  • Zadražnik T, Hollung K, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 78:254–272. doi:10.1016/j.jprot.2012.09.021

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq, CAPES, Fundação Araucária and UTFPR for financial support.

Author’s contribution

TF, JAM and CCD conceived the study. CCD, MAB, KKK, MHR, DRG, FP, KF, LGW and TF performed the experiment and collected data. CCD, MHR, LGW and TF analysed the data. CCD, TF and LGW wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Finatto.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipp, C.C., Marchese, J.A., Woyann, L.G. et al. Drought stress tolerance in common bean: what about highly cultivated Brazilian genotypes?. Euphytica 213, 102 (2017). https://doi.org/10.1007/s10681-017-1893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1893-5

Keywords

Navigation