Skip to main content
Log in

Molecular basis of off-type microsatellite markers in papaya

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Papaya (Carica papaya L.) is a major fruit crop in the tropics and is a model system for studying sex chromosome evolution in plants. From a simple sequence repeat (SSR) mapping project in papaya, 37 SSRs displayed non-parental alleles in the F2 population, known as off-type markers. They all belong to Class I (≥20 bp, hypervariable markers). To investigate the molecular basis of these non-parental alleles, seven SSRs with off-type alleles were cloned and sequenced from two parents and selected F2 individuals. SSR repeat motif variation was the major cause for the generation of off-type alleles and single nucleotide polymorphisms (SNPs) and Insertion/deletion also contributed to off-type polymorphism. Off-type SSRs arose after one meiosis at 3 % frequency. Two of the seven markers had no polymorphisms between the parents but non-parental alleles segregated among the F2 individuals. Four of the seven markers exhibited SNPs between parents with transition and transversion at 2:1 ratio. Six markers showed additional SNPs between F2 offspring and parents with transition and transversion at about 1:1 ratio, suggesting higher than expected level of transversion mutations at the F2 population after one meiosis event between the parental genomes. These off-type SSRs were analyzed in a second F2 population and 43 % of them were conserved. The major cause of off-type SSRs in papaya is the variation of repeat length in Type I SSRs, and the underlining mechanism might be DNA replication slippage of repeat motifs. The presence and high conservation of these off-type markers demonstrated that hypervariable class I SSRs could generate genetic variation in one generation and increase genetic diversity for natural selection to enhance fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BAC:

Bacterial artificial chromosome

BES:

BAC end sequences

MSY:

Male-specific region of the Y

SSR:

Simple sequence repeat

SNP:

Single nucleotide polymorphisms

InDel:

Insertion and deletion

WGS:

Whole-genome shotgun

FISH:

Fluorescence in situ hybridization

DAPI:

4′,6-Diamidino-2-phenylindole

References

  • Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218

    Article  CAS  Google Scholar 

  • Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2009) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327(5967):836–840. doi:10.1126/science.1183439

    Article  PubMed  PubMed Central  Google Scholar 

  • Blas AL, Ming R, Liu ZY, Veatch OJ, Paull RE, Moore PH, Yu QY (2010) Cloning of the papaya chromoplast-specific lycopene beta-cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol 152(4):2013–2022. doi:10.1104/pp.109.152298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blas AL, Yu Q, Veatch OJ, Paull RE, Moore PH, Ming R (2012) Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. Mol Breed 29(2):457–466

    Article  Google Scholar 

  • Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales. Genetics 177(4):2481–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9(4):189–194. doi:10.1007/BF00232177

    Article  CAS  PubMed  Google Scholar 

  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology 10:1466–1472

    Article  CAS  Google Scholar 

  • Harding RM, Boyce A, Clegg J (1992) The evolution of tandemly repetitive DNA: recombination rules. Genetics 132(3):847–859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauge X, Litt M (1993) A study of the origin of ‘shadow bands’ seen when typing dinucleotide repeat polymorphisms by the PCR. Hum Mol Genet 2(4):411–415

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Kauppi L, Neumann R (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29:217–222

    Article  CAS  PubMed  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18(7):1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Chaitanya PS, Nagarajaram HA (2011) PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes. Nucleic Acids Res 39(suppl 1):D601–D605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Rota M, Kantety RV, Yu J-K, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4(3):203–221

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Liu W, Jakubczak JL, Erexson GL, Tindall KR, Chan R, Muller WJ, Adhya S, Garges S, Merlino G (2002) Genetic instability favoring transversions associated with ErbB2-induced mammary tumorigenesis. Proc Natl Acad Sci USA 99(6):3770–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166(1):419–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452(7190):991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200

    Article  CAS  PubMed  Google Scholar 

  • Mun J-H, Kim D-J, Choi H-K, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat O, Dudez A-M (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172(4):2541–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na J-K, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Pérez RN, Feltus FA, Chen C, Kubat Z (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13(1):176

    Article  CAS  PubMed  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327(5961):92–94

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan S, Thakur J, Siddharthan R, Sanyal K (2008) Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc Natl Acad Sci USA 105(50):19797–19802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvanov ED, Petkov PM, Paigen K (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 327:835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238

    Article  CAS  Google Scholar 

  • Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20(2):211–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Storey W (1969) Papaya. In: Ferwerda FP, Wit F (eds) Outlines of perennial crop breeding in the tropics. Wageningen H. Veenman and Zonen NV, Wageningen

    Google Scholar 

  • Sugden KD, Campo CK, Martin BD (2001) Direct oxidation of guanine and 7,8-dihydro-8-oxoguanine in DNA by a high-valent chromium complex: a possible mechanism for chromate genotoxicity. Chem Res Toxicol 14(9):1315–1322

    Article  CAS  PubMed  Google Scholar 

  • Tachida H, Iizuka M (1992) Persistence of repeated sequences that evolve by replication slippage. Genetics 131(2):471–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11(8):1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–981

    Article  PubMed  PubMed Central  Google Scholar 

  • Wai CM, Ming R, Moore PH, Paull RE, Yu Q (2010) Development of chromosome-specific cytogenetic markers and merging of linkage fragments in papaya. Trop Plant Biol 3(3):171–181. doi:10.1007/s12042-010-9054-1

    Article  Google Scholar 

  • Walsh PS, Fildes NJ, Reynolds R (1996) Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res 24(14):2807–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen C, Na J-K, Yu Q, Hou S, Paull RE, Moore PH, Alam M, Ming R (2008) Genome-wide comparative analyses of microsatellites in papaya. Trop Plant Biol 1(3–4):278–292

    Article  CAS  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B Biol 268(1482):2211–2220

    Article  Google Scholar 

  • Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo M-C (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10(1):371

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yuan D, Yu S, Li Z, Cao Y, Miao Z, Qian H, Tang K (2004) Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana. Bioinformatics 20(7):1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wai CM, Ming R, Yu Q, Jiang J (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Trop Plant Biol 3(3):166–170

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from NSF Plant Genome Research Program (Award No. DBI 0922545) and startup fund from Fujian Agriculture and Forestry University to R.M.

Authors’ contribution

RM and RC conceived the study, coordinated all research activities; JF and AW carried out wet lab experiments and conducted bioinformatics analysis; JF, RC and RM wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Wood, A., Chen, R. et al. Molecular basis of off-type microsatellite markers in papaya. Euphytica 209, 323–339 (2016). https://doi.org/10.1007/s10681-015-1630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1630-x

Keywords

Navigation