Skip to main content
Log in

Using presence/absence variation markers to identify the QTL/allele system that confers the small seed trait in wild soybean (Glycine soja Sieb. & Zucc.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Glycine soja has the potential to improve upon the cultivated soybean (G. max) in protein content, resistance/tolerance to stresses, and other traits, but its small 100-seed weight (100SW) is usually undesired. To explore the 100SW QTL-allele system of G. soja, the recombinant inbred line population NJRINY with 286 lines was developed from a cross between G. max (NN86-4, 17.9 g) and G. soja (PI342618B, 1.1 g) and was tested over 4 years. The genetic linkage map was constructed with 181 PAV (presence/absence variation) and 42 SSR markers. The quantitative trait locus (QTL) mapping results showed that the wild genetic system of 100SW was composed of three groups of QTLs, including (1) 15 additive QTLs, which accounted for 55.1 % of the phenotypic variation (PV), with each locus contributing 1.5–8.1 % of the PV and all of the wild alleles having negative effects (−0.1 to −0.5 g); (2) 17 epistatic QTL pairs, which accounted for 19.0 % of the PV, with epistatic effects positive for parental type (0.1–0.2 g) and negative for recombinants and all of the QTLs in epistatic pairs having simultaneously additive effects except one pair (SW16); (3) a collection of unmapped minor QTLs that accounted for 22.9 % of the PV. Among the detected total additive and/or epistatic QTLs, 12 QTLs have been reported in the literature, but five of the QTLs and all of the epistatic pairs have not been reported before. The results can be used for marker-assisted breeding for 100SW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Broich SL, Palmer RG (1980) A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29:23–32

    Article  Google Scholar 

  • Carter TE Jr, Nelson RL, Sneller CH, Cui Z (2004) Genetic diversity in soybean. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 303–416

    Google Scholar 

  • Concibido VC, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    CAS  PubMed  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    Article  CAS  Google Scholar 

  • Csanádi G, Vollmann J, Stift G, Lelley T (2001) Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet 103:912–919

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feng F, Luo L, Li Y, Zhou L, Xu X, Wu J, Chen H, Chen L, Mei H (2005) Comparative analysis of polymorphism of InDel and SSR markers in rice. Mol Plant Breed 3:725–730

    CAS  Google Scholar 

  • Hartwig EE (1973) Varietal development. Soybeans: improvement, production and uses. American Society of Agronomy, Madison

    Google Scholar 

  • Hoeck JA, Fehr WR, Shoemaker RC, Welke GA, Johnson SL, Cianzio SR (2003) Molecular marker analysis of seed size in soybean. Crop Sci 43:68–74

    Article  Google Scholar 

  • Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang T-Y, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M (2014) A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet 127:1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Kim YC, Kim ST, Son BG, Choi YW, Kang JS, Park YH, Cho YS, Choi IS (2010) Analysis of quantitative trait loci (QTLs) for seed size and fatty acid composition using recombinant inbred lines in soybean. J Life Sci 20:1186–1192

    Article  CAS  Google Scholar 

  • Kim M, Hyten DL, Niblack TL, Diers BW (2011) Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci 51:934–943

    Article  Google Scholar 

  • Kim H, Xing G, Wang Y, Zhao T, Yu D, Yang S, Li Y, Chen S, Palmer R, Gai J (2014) Constitution of resistance to common cutworm in terms of antibiosis and antixenosis in soybean RIL populations. Euphytica 196:137–154

    Article  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SSM, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Li DD, Pfeiffer TW, Cornelius PL (2008) Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci 48:571–581

    Article  Google Scholar 

  • Li Y-h, Liu B, Reif JC, Liu Y-l, Li H-h, Chang R-z, Qiu L-ju (2014) Development of insertion and deletion markers based on biparental resequencing for fine mapping seed weight in soybean. Plant Gen. doi:10.3835/plantgenome2014.04.0014

    Google Scholar 

  • Liu B, Fujita T, Yan ZH, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100(5):1027–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y-l, Li Y-h, Reif JC, Mette MF, Liu Z-x, Liu B, Zhang S-s, Yan L, Chang R-z, Qiu L-j (2013) Identification of quantitative trait loci underlying plant height and seed weight in soybean. Plant Gen. doi:10.3835/plantgenome2013.03.0006

    Google Scholar 

  • Mahama AA, Lewers KS, Palmer RG (2002) Genetic linkage in soybean. Crop Sci 42:1459–1464

    Article  CAS  Google Scholar 

  • Maughan PJ, Maroof MAS, Buss GR (1996) Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93:574–579

    Article  CAS  PubMed  Google Scholar 

  • Nyquist WE, Baker R (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Ooijen JW, Voorrips R (2002) JoinMap: version 3.0: software for the calculation of genetic linkage maps. University and Research Center, Plant Research International, Wageningen

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1652–1656

    Article  Google Scholar 

  • Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    CAS  PubMed  Google Scholar 

  • SAS Institute Inc (2002) SAS/STAT software: statistical analysis software version 9.1. SAS Institute Inc, Cary, North Carolina

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40:1438–1444

    Article  CAS  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Jia GF, Zhu YL, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50:1950–1960

    Article  CAS  Google Scholar 

  • Su CF, Lu WG, Zhao TJ (2010) Verification and fine-mapping of QTLs conferring days to flowering in soybean using residual heterozygous lines. Chin Sci Bull 55:499–508

    Article  CAS  Google Scholar 

  • Sun Y-n, Pan J-b, Shi X-l, Du X-y, Wu Q, Qi Z-m, Jiang H-w, Xin D-w, Liu C-y, Hu G-h, Chen Q-s (2012) Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol Biol Rep 39:9435–9443

    Article  CAS  PubMed  Google Scholar 

  • Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121:229–236

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Graef GL, Procopiuk AM, Diers BW (2004) Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet 108:458–467

    Article  CAS  PubMed  Google Scholar 

  • Wang W, He Q, Yang H, Xiang S, Zhao T, Gai J (2013) Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica 189:293–307

    Article  Google Scholar 

  • Wang W, He Q, Yang H, Xiang S, Xing G, Zhao T, Gai J (2014a) Identification of QTL/segments related to seed-quality traits in G. soja using chromosome segment substitution lines. Plant Genet Resour C 12:S65–S69

    Article  CAS  Google Scholar 

  • Wang Y, Lu J, Chen S, Shu L, Palmer RG, Xing G, Li Y, Yang S, Yu D, Zhao T, Gai J (2014b) Exploration of presence/absence variation and corresponding polymorphic markers in soybean genome. J Integr Plant Biol 56:1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Li Y-H, Yang C-Y, Ren S-X, Chang R-Z, Zhang M-C, Qiu L-J (2014) Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max × Glycine soja. Plant Breed 133:632–637

    Article  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

  • Yang K, Moon J-K, Jeong N, Chun H-K, Kang S-T, Back K, Jeong S-C (2011) Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom 33:685–692

    Article  CAS  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Basic Research Program of China (2011CB1093), National Hightech R&D Program of China (2011AA10A105, 2012AA101106), MOE 111 Project (B08025), MOE Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT13073), MOA Public Profit Program (201203026-4), Jiangsu Higher Education PAPD Program, and Jiangsu JCIC-MCP program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyi Gai or Tuanjie Zhao.

Additional information

Wubin Wang and Xuliang Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, X., Chen, S. et al. Using presence/absence variation markers to identify the QTL/allele system that confers the small seed trait in wild soybean (Glycine soja Sieb. & Zucc.). Euphytica 208, 101–111 (2016). https://doi.org/10.1007/s10681-015-1591-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1591-0

Keywords

Navigation