Skip to main content
Log in

Segregation and associations of enological and agronomic traits in Graciano × Tempranillo wine grape progeny (Vitis vinifera L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The main objective of this research was the evaluation of the variability present in a segregating wine grape population derived from a cross between Graciano × Tempranillo, two Spanish varieties, in order to select improved genotypes with potential for producing high-quality wines in a climate change scenario. For that purpose, the phenotypic segregation of 16 agronomic traits related to production and phenology and 11 enological traits related to technical and phenolic maturity was studied in the progeny for three consecutive years. All traits presented transgressive segregation and continuous variation. Year effect was significant for all traits except total, extractable and skin anthocyanins content. However, a high level of genotype consistency for enological traits was revealed by repeatabilities and correlations between years. Significant correlations among traits were observed but most associations were weak. Furthermore, the CAPS (Cleaved Amplified Polymorphic Sequence) marker for the VvmybA genotype was tested to determine whether it would be useful in indirect selection for berry anthocyanins content. The results showed that the number of homozygous and heterozygous genotypes for the functional colour allele adjusted to a 1:1 segregation ratio, and that homozygous genotypes had significantly higher anthocyanins content. Principal component analysis found eight variables that contributed up to 80 % of the phenotypic variability present in the population. Seven groups of hybrids were distinguished based on ripening time, cluster weight, berry weight and anthocyanins content by cluster analysis; and fourteen genotypes were pre-selected for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:69–673

    Article  Google Scholar 

  • Baggiolini M (1952) Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Rev Rom Agric Vitic 8:4–6

    Google Scholar 

  • Bayo-Canha M, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L (2012) Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny. Euphytica 186:393–407

    Article  CAS  Google Scholar 

  • Bergqvist J, Dokoozlian N, Ebisuda N (2001) Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. Am J Enol Viticult 52:1–7

    CAS  Google Scholar 

  • Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of the new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 45:1142–1149

    Google Scholar 

  • Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Viticult 50:243–246

    CAS  Google Scholar 

  • Buttrose MS, Hale CR, Kliewer WM (1971) Effect of temperature on the composition of ‘Cabernet-Sauvignon’ berries. Am J Enol Viticult 22:71–75

    CAS  Google Scholar 

  • Cacho J, Fernández P, Ferreira V, Castells JE (1992) Evolution of five anthocyanidin-3-glucosides in the skin of the Tempranillo, Moristel, and Garnacha grape varieties and influence of climatological variables. Am J Enol Viticult 43:244–248

    CAS  Google Scholar 

  • Chomé P, Sotés V, Benayas F, Cayuela M, Hernández M, Sáenz F, Ortiz J, Rodríguez I, Chaves J (2006) Variedades de Vid Registro de Variedades Comerciales. MAPA, Madrid

    Google Scholar 

  • Clark JR (2010) Eastern United States table grape breeding. J Am Pomol Soc 64:72–77

    Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  PubMed  Google Scholar 

  • Coombe BG, Hale CR (1973) The hormone content of ripening grape berries and the effect of growth substance treatments. Plant Physiol 51:629–634

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG, Iland PG (2004) Grape berry development and winegrape quality. In: Dry PR, Coombe BG (eds) Viticulture volume 1-resources. Winetitles, Adelaide, pp 210–248

    Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38

    Article  PubMed  Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795

    Article  PubMed  CAS  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Viticult 57:257–268

    CAS  Google Scholar 

  • Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99

    Article  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman Scientific and Technical, London

    Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664

    Article  PubMed  CAS  Google Scholar 

  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2013) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57:1–17

    Article  Google Scholar 

  • Gladstones JS (2004) Climate and Australian viticulture. In: Dry PR, Coombe BG (eds) Viticulture volume 1-resources. Winetitles, Adelaide, pp 90–118

    Google Scholar 

  • Gonzalez-San Jose ML, Santa-Maria G, Diez C (1990) Anthocyanins as parameters for differentiating wines by grape variety, wine-growing region, and wine-making methods. J Food Compost Anal 3:54–66

    Article  CAS  Google Scholar 

  • Hall A, Jones GV (2009) Effect of potential atmospheric warming on temperature-based indices describing Australian winegrape growing conditions. Aust J Grape Wine R 15:97–119

    Article  Google Scholar 

  • Harbertson JF, Kennedy JA, Adams DO (2002) Tannin in skins and seeds of Cabernet Sauvignon, Syrah, and Pinot noir during ripening. Am J Enol Viticult 53:54–59

    CAS  Google Scholar 

  • Ibáñez J, Muñoz-Organero G, Zinelabidine LH, Teresa de Andrés M, Cabello F, Martínez-Zapater JM (2012) Genetic origin of the grapevine cultivar Tempranillo. Am J Enol Viticult 63:549–553

    Article  Google Scholar 

  • Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality-a review. Am J Enol Viticult 44:409–430

    CAS  Google Scholar 

  • Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Viticult 51:249–261

    Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343

    Article  Google Scholar 

  • Jordao AM, Ricardo da Silva JM, Laureano O (1998) Evolution of anthocyanins during grape maturation of two varieties (Vitis vinifera L.) Castelao Francés and Touriga Francesa. Vitis 37:93–94

    CAS  Google Scholar 

  • Kliewer WM (1977) Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes. Am J Enol Viticult 28:96–103

    CAS  Google Scholar 

  • Lai R, Woolley DJ, Lawes GS (1989) Retardation of fruit growth of kiwifruit (Actinidia deliciosa) by leaves: interactions with vine performance and seed number. Scientia Hort 39:319–329

    Article  Google Scholar 

  • Liang Z, Yang C, Yang J, Wu B, Wang L, Cheng J, Li S (2009) Inheritance of anthocyanins in berries of Vitis vinifera grapes. Euphytica 167:113–125

    Article  CAS  Google Scholar 

  • Liang Z, Sang M, Ma A, Zhao S, Zhong GY, Li S (2011) Inheritance of sugar and acid contents in the ripe berries of a tetraploid × diploid grape cross population. Euphytica 182:251–259

    Article  CAS  Google Scholar 

  • Liang Z, Sang M, Wu BH, Ma A, Zhao S, Zhong GY, Li S (2012) Inheritance of anthocyanin content in the ripe berries of a tetraploid × diploid grape cross population. Euphytica 186:343–356

    Article  CAS  Google Scholar 

  • Liu H-F, Wu BH, Fan PG, Xu HY, Li SH (2007) Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica 153:99–107

    Article  CAS  Google Scholar 

  • Martín JP, Borrego J, Cabello F, Ortiz JM (2003) Characterisation of Spanish grapevine cultivar diversity using sequenced-tagged microsatellite site markers. Genome 46:10–18

    Article  PubMed  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Nadal M (2010) Phenolic maturity in red grapes. In: Delrot S, Medrano H, Etti O, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer Science, Heidelberg, pp 389–411

    Chapter  Google Scholar 

  • Nadal M, Lampreave M (2007) Influencia del riego en la maduración polifenólica de las bayas y la calidad de los vinos. Experiencia del riego en la comarca del Priorato, DO Montsant. In: Fundamentos, aplicación y consecuencias del riego en la vid. Editorial Agrícola Española, Madrid, pp 231–256

    Google Scholar 

  • Núñez V, Monagas M, Gomez-Cordovés MC, Bartolomé B (2004) Vitis vinifera L. cv. Graciano grapes characterized by its anthocyanin profile. Postharvest Biol Technol 31:69–79

    Article  Google Scholar 

  • Ortega-Regules A, Romero-Cascales I, López-Roca JM, Ros-García JM, Gómez-Plaza E (2006) Anthocyanin fingerprint of grapes: environmental and genetic variations. J Sci Food Agric 86:1460–1467

    Article  CAS  Google Scholar 

  • Ramos MC, Jones GV, Martínez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 381:1–15

    Article  Google Scholar 

  • Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellitemarker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872

    Article  PubMed  CAS  Google Scholar 

  • Saint-Criq de Gaujelac N, Vivas N, Glories Y (1998) Maturité phénolique: définition et contrôle. Rev Franc Oenol 173:22–25

    Google Scholar 

  • Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373

    PubMed  CAS  Google Scholar 

  • Shiraishi M, Fujishima H, Chijiwa H, Muramoto K (2011) Estimates of genotypic and yearly variations on fruit quality and functional traits for tetraploid table grape breeding. Euphytica 185:243–251

    Article  Google Scholar 

  • This P, Lacomb T, Thomas M (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519

    Article  PubMed  CAS  Google Scholar 

  • Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen C, Seguin G (2006) The concept of terroir in viticulture. J Wine Res 17:1–10

    Article  Google Scholar 

  • Viana AP, Riaz S, Walker MA (2011a) Evaluation of genetic dissimilarity in a segregating wine grape population. Genet Mol Res 10:3847–3855

    Article  PubMed  CAS  Google Scholar 

  • Viana AP, Riaz S, Walker MA (2011b) Evaluating genetic diversity and optimizing parental selections in a segregating table-grape population. Am J Enol Vitic 62(3):285–290

    Article  Google Scholar 

  • Vivas de Gaulejac N, Nonier MF, Guerra C, Vivas N (2001) Anthocyanin in grape skins during maturation of Vitis vinifera L. cv. Cabernet Sauvignon and Merlot noir from Bordeaux terroirs. J Int Sci Vigne Vin 35:149–156

    CAS  Google Scholar 

  • Walker A, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  PubMed  CAS  Google Scholar 

  • Webb LB, Whetton PH, Barlow EWR (2006) Potential impacts of projected greenhouse gas-induced climate change on Australian viticulture. Aust N Z Wine Ind J 21:16–20

    Google Scholar 

  • Webb LB, Whetton PH, Barlow EWR (2007) Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust J Grape Wine R 13:165–175

    Article  Google Scholar 

  • Wei X, Sykes SR, Clingeleffer PR (2002) An investigation to estimate genetic parameters in CSIRO’s table grape breeding program. 2. Quality characteristics. Euphytica 128:343–351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Government of La Rioja through the FOMENTA 04/2008 research project. Shiren Song was initially supported by a fellowship from the Chinese Research Council and for the last 3 years by a MAE-AECID fellowship from the Spanish Government. We thank the collaboration of Aleceia Bermejo, Elena López-Ocón and Ana Mangado for laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina M. Menéndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., del Mar Hernández, M., Provedo, I. et al. Segregation and associations of enological and agronomic traits in Graciano × Tempranillo wine grape progeny (Vitis vinifera L.). Euphytica 195, 259–277 (2014). https://doi.org/10.1007/s10681-013-0994-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0994-z

Keywords

Navigation