Skip to main content

Advertisement

Log in

Differential preference of Capsicum spp. cultivars by Aphis gossypii is conferred by variation in volatile semiochemistry

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The aim of this study was to demonstrate that Capsicum spp. cultivars are differentially preferred by the cotton aphid, Aphis gossypii, and to investigate the role of volatile semiochemicals in conferring differences in host preferences. Two preference assays were conducted in 2008 under greenhouse conditions. Fourteen different commercially available cultivars were grown in cages protected by an anti-aphid net, and were infested 60 days after planting, through the release of ten adult female A. gossypii per plant. The results showed that after a five-day infestation period, statistically significant differences in the mean number of A. gossypii between cultivars were observed, with Sweet Pepper Hybrid Green Belt (SPHGB) being one of the cultivars with the lowest number of A. gossypii per plant. To test the hypothesis that the preference of cultivars was associated with release of volatile, Capsicum spp-derived semiochemicals, olfactometer behavior bioassays were conducted with A. gossypii, using volatile organic compounds (VOCs) collected from non-preferred SPHGB and preferred SPAB cultivars. A. gossypii was significantly repelled only by the VOCs of infested SPHGB. Furthermore, coupled gas chromatography-mass spectrometry (GC-MS) analysis of VOCs released by plants prior to, and after, A. gossypii infestation, revealed that the non-preferred SPHGB cultivar released nine additional compounds after infestation, including 6-methyl-5-hepten-2-one, a known plant defense semiochemical involved in plant—aphid interactions. These data suggest that non-preferred cultivars releasing this semiochemical have the potential to be used in breeding programs aimed at producing A. gossypii-resistant Capsicum spp. cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884. doi:10.1105/tpc.016253

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Anwar MB, Jilani G, Javed H, Yasmin S, Begum I (2008) Resistance to foliage feeding aphid in wheat. Pak J Biol Sci 11:801–804

    Article  PubMed  Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorns S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142. doi:10.1111/j.1461-0248.2004.00699.x

    Article  CAS  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Nat Acad Sci 97:9329–9334

    Article  CAS  PubMed  Google Scholar 

  • Blackman RL, Eastop VP (1984) Aphids on the world’s crops: an identification guide. Wiley, Chichester

    Google Scholar 

  • Blat SF, Braz LT, da Arruda AS (2007) Avaliação de híbridos duplos de pimentão. Hortic Bras 25:350–354

    Article  Google Scholar 

  • Bosland PW, Ellington JJ (1996) Comparison of Capsicum annum and C. pubescent for antixeosis as a means of aphid resistance. HortScience 31:1017–1018

    Google Scholar 

  • Broekgaarden C, Poelman EH, Steenhuis G, Voorrips RE, Dicke M, Vosman B (2008) Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach. Plant Cell Environ. 31:1592–1605. doi:10.1111/j.1365-3040.2008.01871.x

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Pickett JA (2007) Plant defence signalling induced by biotic attacks. Curr Opin Plant Biol 10:387–392

    Article  CAS  PubMed  Google Scholar 

  • Coleson JL, Miller RH (2005) Antibiosis and antixenosis to Aphis gossypii (Homoptera:Aphididae) in Colocasia esculenta. J Econ Entomol 98:996–1006

    Article  PubMed  Google Scholar 

  • De Moraes CM, Mescheer MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580. doi:10.1007/s10886-009-9639-z

    Article  PubMed  Google Scholar 

  • Drukker B, Bruin J, Jacobs G, Kroon A, Sabelis MW (2000) How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Exp Appl Acarol 24:881–895

    Article  CAS  PubMed  Google Scholar 

  • Du YJ, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract the parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    Article  CAS  Google Scholar 

  • Ebadah IMA, Mahmoud YA, Moawad SS (2006) Susceptibility of some Faba bean cultivars to Field infestation with some insect pests. Res J Agr Biol Sci 2:537–540

    Google Scholar 

  • Ekesi S, Maniania NK, Onu I (1998) Antibiosis and antixenosis of two cowpea varieties to the legume flower thrips. Afric Crop Sci J 6:49–59

    Google Scholar 

  • Ellis PR, Farrell JA (1995) Resistance to cabbage aphid (Brevicoryne brassicae) in six brassica accessions in New Zealand. N Zeal J Crop Hortic Sci 23:25–29. doi:10.1080/01140671.1995.9513864

    Article  Google Scholar 

  • Frantz JD, Gardner J, Hoffmann MP, Jahn MM (2004) Green-house screening of Capsicum accessions for resistance to green peach aphid (Myzus persicae). Hortic Sci 39:1331–1335

    Google Scholar 

  • Furtado RF, Silva FP, Lavôr MTFC, Bleicher E (2009) Susceptibilidade de cultivares de Gossypium hirsutum L. r. latifolium Hutch a Aphis gossypii Glover. Rev Ciênc Agron 40:461–464

    Google Scholar 

  • Gaum WG, Giliomee JH, Pringle KL (1994) Resistance of some rose cultivars to the Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Bull Entomol Res 84:487–492

    Article  Google Scholar 

  • Kellner M, Brantestam AK, Ahman I, Ninkovic V (2010) Plant volatile-induced aphid resistance in barley cultivars is related to cultivar age. Theor Appl Genet. doi: 10.1007/s00122-010-1377-7

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. doi:10.1126/science.291.5511.2141

    Article  CAS  PubMed  Google Scholar 

  • Nagai H (1983) Melhoramento de pimentão (Capsicum annuum L.) visando à resistência ao vírus Y. Hortic Bras 1:3–9

    Google Scholar 

  • Nazzi F, Bortolomeazzi R, Vedova GD, Piccolo FD, Annoscia D, Milani N (2009) Octanoic acid confers to royal jelly varroa-repellent properties. Naturwissenschaften 96:309–314. doi:10.1007/s00114-008-0470-0

    Article  CAS  PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  PubMed  Google Scholar 

  • Pareja M, Moraes MCB, Clark SJ, Birkett MA, Powell W (2007) Response of the aphid parasitoid Aphidius funebris to volatiles from undamaged and aphid-infested Centaurea nigra. J Chem Ecol 33:695–710. doi:10.1007/s10886-007-9260-y

    Article  CAS  PubMed  Google Scholar 

  • Pasko P, Ortega RG, Artega ML (1996) Resistance to Potato vírus y in peppers. Capsicum and Eggplant Newsletter 15:11–27

    Google Scholar 

  • Pettersson J (1970) Studies on Rhopalosiphum padi (L.). An aphid sex attractant. I. Biological studies. Entomol Scand 1:63–73

    Google Scholar 

  • Pickett JA, Rasmussen HB, Woodcock CM, Mathes M, Napier JA (2003) Plant stress signaling: understanding and exploiting plant-plant interactions. Biochem Soc Trans 31:123–127

    Article  CAS  PubMed  Google Scholar 

  • Piesik D, Weaver DK, Runyon JB, Buteler M, Peck GE, Morrill WL (2008) Behavioural responses of wheat stem sawflies to wheat volatiles. Agr Forest Entomol 10:245–253. doi:10.1111/j.1461-9563.2008.00380.x

    Article  Google Scholar 

  • Quiroz A, Pettersson J, Pickett JA, Wadhams LJ, Niemeyer HM (1997) Semiochemicals mediating spacing behavior of bird cherry-oat aphid, Rhopalosiphum padi feeding on cereals. J Chem Ecol 23:2599–2607

    Article  CAS  Google Scholar 

  • Santana MJ, Carvalho JA, Faqquin V, Queiroz TM (2004) Produção do pimentão (Capsicum annuum L.) irrigado sobre diferentes tensões de água no solo e doses de cálcio. Ciênc Agrotec 28:1385–1391

    Article  Google Scholar 

  • Silva AGA, Gonçalves CR, Galvão DM, Gonçalves AJL, Gomes J, Silva M do N, Simoni L de (1968) Quarto catálogo dos insetos que vivem nas plantas do Brasil seus parasitos e predadores. Rio de Janeiro

  • Stewart-Jones A, Poppy GM (2006) Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. J Chem Ecol 32:845–864. doi:10.1007/s10886-006-9039-6

    Article  CAS  PubMed  Google Scholar 

  • Storer JR, van Emden HF (1995) Antibiosis and antixenosis of Chrysanthemum cultivars to the aphid Aphis gossypii. Entomol Exp Appl 77:307–314

    Article  Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to na increase in aphid performance. Proc Natl Acad Sci 98:8139–8144. doi:10.1073/pnas.141079498

    Article  CAS  PubMed  Google Scholar 

  • Weintraub PG (2007) Integrated control of pests in tropical and subtropical sweet pepper production. Pest Manag Sci 63:753–760. doi:10.1002/ps.1366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Rede Nordeste de Biotecnologia (Renorbio) and Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) all of the Brasil. Instituto de Química e Biotecnologia da Universidade Federal de Alagoas (IQB-UFAL), Brasil, for the availability of laboratories. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Science Research Council (BBSRC) of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Gomes da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa, J.G., Pires, E.V., Riffel, A. et al. Differential preference of Capsicum spp. cultivars by Aphis gossypii is conferred by variation in volatile semiochemistry. Euphytica 177, 299–307 (2011). https://doi.org/10.1007/s10681-010-0250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0250-8

Keywords

Navigation