Skip to main content
Log in

Starch characterisation and variability in GBSS loci of synthetic hexaploid wheats and their durum and Aegilops tauschii parents

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Greater variability in starch properties is found in lower ploidy wheats than in commercial hexaploid wheats. This paper reports on the starch properties and variability in granule bound starch synthase (GBSS) loci of 17 diploid (Aegilops tauschii) and 12 tetraploid (durums) potential progenitors of wheat, compared with 29 synthetic hexaploid wheats produced from such progenitors. Starch properties examined were granule size distribution, swelling power, amylose content, gelatinisation and amylose-lipid dissociation properties. A PCR screening method was able to detect the presence or absence of each of the three GBSS genes. It also detected polymorphisms in eight diploids and nine hexaploids, all displaying the same 25 bases deletion in the D genome allele of GBSS. Two tetraploids and five hexaploids were null 4A for GBSS. There was little difference in the amylose contents and amylose-lipid dissociation peak temperatures of the synthetic hexaploids and the lower ploidy wheats. The synthetic hexaploids showed intermediate swelling power values with the durums giving the highest swelling powers. The durums also had higher B granule contents than the A. tauschii accessions, but not as high as the synthetics. However, the A. tauschii samples gave the highest gelatinisation peak temperatures. The presence of the null 4A mutation was positively correlated with swelling power, amylose content and DSC measurements. The new smaller D genome allele of GBSS was associated with slightly higher swelling power. These results confirm the value of wheat progenitor lines as sources of new starch properties for hexaploid wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth C, Clark J, Balsdon J (1993) Expression, organisation and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. Plant Mol Biol 22:67–82

    Article  PubMed  CAS  Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233

    Article  PubMed  CAS  Google Scholar 

  • Batey IL, Mueller BM (1991) Variation in the structure of Australian wheat starch and the relationship to starch quality. In: Martin DJ, Wrigley CW (eds) Proceedings of cereals international, 41st Australian RACI cereal chemistry conference, Brisbane, pp 147–149

  • Blakeney AB (1987) Starch quality evaluation in cereals. In: Murray L (ed) Proceedings of RACI cereal chemistry division polysaccharide workshop, Parkville, pp 23–24

  • Blumenthal C, Wrigley CW, Batey IL, Barlow EWR (1994) The heat-shock response relevant to molecular and structural changes in wheat yield and quality. Aust J Plant Phys 21:901–909

    Article  CAS  Google Scholar 

  • Blumenthal C, Békés F, Gras PW, Barlow EWR, Wrigley CW (1995) Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem 72:539–544

    CAS  Google Scholar 

  • Boggini G, Cattaneo M, Paganoni C, Vaccino P (2001) Genetic variation for waxy proteins and starch properties in Italian wheat germplasm. Euphytica 119:111–114

    Article  CAS  Google Scholar 

  • Briney A, Wilson R, Potter RH, Barclay I, Crosbie G, Appels R, Jones MGK (1998) A PCR-based marker for the selection of starch and potential noodle quality in wheat. Mol Breed 4:427–433

    Article  CAS  Google Scholar 

  • Brocklehurst PA, Evers AD (1977) The size distribution of starch granules in endosperm of different sized kernels of the wheat cultivar Maris Huntsman. J Sci Food Agric 28:1084–1089

    Article  Google Scholar 

  • Cakmak I, Cakmak O, Eker S, Ozdemir A, Watanabe N, Braun HJ (1999) Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats. Plant Soil 215:203–209

    Article  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • Clark JR, Robertson M, Ainsworth CC (1991) Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Plant Mol Biol 16:1099–1101

    Article  PubMed  CAS  Google Scholar 

  • Doane WM (1989) New and potential markets for wheat starch. In: Pomeranz Y (ed) Wheat is unique: structure, composition, processing, end-use properties, and products. AACC, St Paul, pp 615–631

    Google Scholar 

  • Eliasson A-C, Karlsson K (1983) Gelatinization properties of different size classes of wheat starch granules measured by differential scanning calorimetry. Starch/die Stärke 35:130–133

    Article  CAS  Google Scholar 

  • Erdogdu N, Czuchajowska Z, Pomeranz Y (1995) Wheat-flour and defatted milk fractions characterized by differential scanning calorimetry. 1. DSC of flour and milk fractions. Cereal Chem 72:70–75

    CAS  Google Scholar 

  • Evers AD, Lindley J (1977) The particle-size distribution in wheat endosperm starch. J Sci Food Agric 28:98–102

    Article  Google Scholar 

  • Flood RG, Lagudah ES, Halloran GM (1992) Expression of vernalization requirement and spikelet number in synthetic hexaploid wheats and their Triticum tauschii and tetraploid wheat parents. Ann Bot 69:213–217

    Google Scholar 

  • Galliard T (1987) Starch availability and utilization. In: Galliard T (ed) Critical reports on applied chemistry, vol 13: starch: properties and potential. Wiley, Great Britain, pp 1–15

    Google Scholar 

  • Genc Y, McDonald GK (2004) The potential of synthetic hexaploid wheats to improve zinc efficiency in modern bread wheat. Plant Soil 262:23–32

    Article  CAS  Google Scholar 

  • Gororo NN, Flood RG, Eastwood RF, Eagles HA (2001) Photoperiod and vernalization responses in Triticum turgidum × T tauschii synthetic hexaploid wheats. Ann Bot 88:947–952

    Article  Google Scholar 

  • Graybosch RA (1998) Waxy wheats: origin, properties, and prospects. Trends Food Sci Tech 9:35–142

    Article  Google Scholar 

  • Hoseney RC, Lineback DR, Seib PA (1983) Role of starch in baked foods, vol 4. Bak Dig, pp 65–71

  • Hoshino T, Ito S, Hatta K, Nakamura T, Yamamori M (1996) Development of waxy common wheat by haploid breeding. Breed Sci 46:185–188

    Google Scholar 

  • Hughes CE, Briarty LG (1976) Stereological analysis of the contribution made to mature wheat endosperm starch by large and small granules. Starch/die Stärke 28:336–337

    Article  Google Scholar 

  • Innes RL, Kerber ER (1994) Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome 37:813–822

    PubMed  CAS  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Kema GHJ, Lange W, Van Silfhout CH (1995) Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology 85:425–429

    Article  Google Scholar 

  • Kerr RW (1950) Chemistry and industry of starch. Academic Press Inc, New York, pp 3–15

    Google Scholar 

  • Kim W, Johnson JW, Graybosch RA, Gaines CS (2003) Physicochemical properties and end-use quality of wheat starch as a function of waxy protein alleles. J Cereal Sci 37:195–204

    Article  CAS  Google Scholar 

  • Konik CM (1995) Differential scanning calorimetry of wheat starch. In: Williams YA, Wrigley CW (eds) Proceedings of 45th Australian RACI cereal chemistry conference, Adelaide, pp 140–144

  • Konik CM, Mikkelsen LM, Moss R, Gore PJ (1994) Relationships between physical starch properties and yellow alkaline noodle quality. Starch/die Stärke 46:292–299

    Article  CAS  Google Scholar 

  • Konik CM, Rahman S, Abbott DC, Appels R (1996) Restriction enzyme mapping of the granule bound starch synthase gene. In: Wrigley CW (ed) Proceedings of 46th Australian RACI cereal chemistry (Gluten ‘96/Cereals ‘96) conference, Sydney, pp 234–236

  • Konik-Rose CM, Moss R, Rahman S, Appels R, Stoddard FL, McMaster G (2001) Evaluation of the 40 mg swelling test for measuring starch functionality. Starch/die Stärke 53:14–20

    Article  CAS  Google Scholar 

  • Kossmann J, Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Plant Sci 19:171–226

    Article  CAS  Google Scholar 

  • Lagudah ES, MacRitchie F, Halloran GM (1987) The influence of high-molecular-weight subunits of glutenin from Triticum tauschii on flour quality of synthetic hexaploid wheat. J Cereal Sci 5:129–138

    CAS  Google Scholar 

  • Limin AE, Fowler DB (1993) Inheritance of cold hardness in Triticum aestivum × synthetic hexaploid wheat crosses. Plant Breed 110:103–108

    Article  Google Scholar 

  • Limin AE, Houde M, Chauvin LP, Fowler DB, Sarhan F (1995) Expression of the cold-induced wheat gene Wcs120 and its homologs in related species and interspecific combinations. Genome 38:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82:117–124

    Article  Google Scholar 

  • Manners DJ (1985) Some aspects of the structure of starch. Cereal Foods World 30:461–467

    CAS  Google Scholar 

  • Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39:359–366

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Smith AM (1995) Starch biosynthesis. Plant Cell 7:971–985

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Araki E, Tarui S (1999) Amylose synthesis capacity of the three Wx genes of wheat cv. Chinese spring. Euphytica 108:91–95

    Article  CAS  Google Scholar 

  • Miura H, Wickramasinghe MHA, Subasinghe RM, Araki E, Komae K (2002) Development of near-isogenic lines of wheat carrying different null Wx alleles and their starch properties. Euphytica 123:353–359

    Article  CAS  Google Scholar 

  • Mohammadkhani A, Stoddard FL, Marshall DR (1998) Survey of amylose content in Secale cereale, Triticum monococcum, T. turgidum and T. tauschii. J Cereal Sci 28:273–280

    Article  CAS  Google Scholar 

  • Monari AM, Simeone MC, Urbano M, Margiotta B, Lafiandra D (2005) Molecular characterization of new waxy mutants identified in bread and durum wheat. Theor Appl Genet 110:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Morris VJ (1990) Starch gelation and retrogradation. Trends Food Sci Tech 7:2–6

    Article  Google Scholar 

  • Morrison WR, Milligan TP, Azudin MN (1984) A relationship between the amylose and lipid contents of starches from diploid cereals. J Cereal Sci 2:257–271

    Article  CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose-free) wheats. Mol Gen Genet 248:153–259

    Article  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Leroy P (1995) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533

    PubMed  CAS  Google Scholar 

  • Pena RJ, Zarco-Hernandez J, Mujeeb-Kazi A (1995) Glutenin subunit compositions and bread-making quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii (Coss.) Schmal crosses. J Cereal Sci 21:15–23

    Article  CAS  Google Scholar 

  • Pomeranz Y (1992) Enzyme resistant starch—an ideal dietary fiber and more. A review. In: Humphrey-Taylor VJ (ed) Proceedings of 42nd Australian RACI cereal chemistry conference, Christchurch, pp 204–208

  • Rafi MM, Ehdaie B, Waines JG (1992) Quality traits, carbon isotope discrimination and yield components in wild wheats. Ann Bot 69:467–474

    CAS  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Article  PubMed  CAS  Google Scholar 

  • Rohde W, Becker D, Salamini F (1988) Structural analysis of the waxy locus from Hordeum valgare. Nucleic Acids Res 16:7185–7186

    Article  PubMed  CAS  Google Scholar 

  • Smith AM (2001) The biosynthesis of starch granules. Biomacromolecules 2:335–341

    Article  PubMed  CAS  Google Scholar 

  • Soulaka AB, Morrison WR (1985) The amylose and lipid contents, dimensions, and gelatinisation characteristics of some wheat starches and their A- and B-granule fractions. J Sci Food Agric 36:709–718

    Article  CAS  Google Scholar 

  • Sprague QF, Brimhill B, Nixon RM (1943) Some effects of the waxy gene in corn on properties of the endosperm starch. J Am Soc Agron 35:817–822

    Google Scholar 

  • Stoddard FL (1999) Survey of starch particle-size distribution in wheat and related species. Cereal Chem 76:145–149

    Article  CAS  Google Scholar 

  • Stoddard FL (2000) Quantitative analysis of wheat starch B-granule content. Euphytica 112:23–31

    Article  Google Scholar 

  • Stoddard FL (2003) Genetics of starch granule size distribution in tetraploid and hexaploid wheats. Aust J Agric Res 54:637–648

    Article  Google Scholar 

  • Stoddard FL, Sarker R (2000) Characterization of starch in Aegilops species. Cereal Chem 77:445–447

    Article  CAS  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Urbano M, Margiotta B, Colaprico G, Lafiandra D (2002) Waxy proteins in diploid, tetraploid and hexaploid wheats. Plant Breed 121:465–469

    Article  CAS  Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Del Toro E, Crossa J, Rajaram S (1994a) Agronomic variability in selected Triticum turgidum × T. tauschii synthetic hexaploid wheats. J Agron Crop Sci 173:307–317

    Article  Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Fuentes-Davila G, Rajaram S, Del Toro E (1994b) Resistance to Karnal bunt (Tilletia indica Mitra) in synthetic hexaploid wheats derived from Triticum turgidum × T. tauschii. Plant Breed 112:63–69

    Article  Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Fuentes-Davila G, Rajaram S (1996) Registration of four synthetic hexaploid wheat germplasm lines derived from Triticum turgidum × T. tauschii crosses and resistance to Karnal bunt. Crop Sci 36:218

    Google Scholar 

  • Waines JG, Ehdaie B, Barnhart D (1987) Variability in Triticum and Aegilops species for seed characteristics. Genome 29:41–46

    CAS  Google Scholar 

  • Watanabe N, Noda Y, Goto N, Miura H (1998) Variation for apparent amylose content of endosperm starch in Triticum durum and Aegilops squarrosa. Euphytica 101:283–286

    Article  CAS  Google Scholar 

  • Yamamori M, Quynh NT (2000) Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor Appl Genet 100:32–38

    Article  CAS  Google Scholar 

  • Yamamori M, Nakamura T, Endo TR, Nagamine T (1994) Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor Appl Genet 89:179–184

    CAS  Google Scholar 

  • Yamamori M, Nakamura T, Nagamine T (1995a) Inheritance of waxy endosperm character in a common wheat lacking three Wx proteins. Breed Sci 45:377–379

    Google Scholar 

  • Yamamori M, Nakamura T, Nagamine T (1995b) Polymorphism of two waxy proteins in the emmer group of tetraploid wheat, Triticum dicoccoides, T. dicoccum, and T. durum. Plant Breed 114:215–218

    Article  CAS  Google Scholar 

  • Yan LL, Bhave M, Fairclough R, Konik C, Rahman S, Appels R (2000) The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat. Genome 43:264–272

    Article  PubMed  CAS  Google Scholar 

  • Zhao XC, Sharp PJ (1994) Wheat “waxy” proteins: SDS–PAGE separation and variation in Australian cultivars. In: Paull J, Dundas IS, Sheppard KJ, Hollamby (eds) Proceedings of 7th wheat breeding assembly, Adelaide, pp 253–256

  • Zhao XC, Sharp PJ (1998) Production of all eight genotypes of null alleles at ‘waxy’ loci in bread wheat, Triticum aestivum L. Plant Breed 117:488–490

    Article  Google Scholar 

  • Zhao XC, Batey IL, Sharp PJ, Crosbie G, Barclay I, Wilson R, Morell MK, Appels R (1998) A single genetic locus associated with starch granule properties and noodle quality in wheat. J Cereal Sci 27:7–13

    Article  CAS  Google Scholar 

  • Zwart RS, Thompson JP, Godwin ID (2004) Genetic analysis of resistance to root-lesion nematode (Pratylenchus thornei) in wheat. Plant Breed 123:209–212

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research from the Grains Research and Development Corporation is gratefully acknowledged. This work comprised part of C. K.-R.’s University of Sydney PhD research program. We thank A. Mujeeb Kazi and O. S. Abdalla, CIMMYT, Mexico, for the synthetic hexaploid wheats, durums and A. tauschii; R. A. McIntosh and N. Barnes, University of Sydney, Plant Breeding Institute, Cobbitty, for help with propagation; Graham Crosbie, Western Australian Department of Agriculture, and Zhonglin Zhen, BRI Australia, for providing the control varieties; Ann Briney, Murdoch University, Western Australia for the PCR primer sequences and schedule; Tony Blakeney and Margret Martin for support and use of their rice thresher at Yanco Agricultural Institute; Tas Westcott and Ada De Palo, Arnott’s Research Centre, for support and use of the DSC; and David Abbott, Claudia Kammer, Young-Kwang Lee, Andrew Pedler, Michele Ritchie, Tony Rose and Steven Zounis for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Konik-Rose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konik-Rose, C.M., Rahman, S., Appels, R. et al. Starch characterisation and variability in GBSS loci of synthetic hexaploid wheats and their durum and Aegilops tauschii parents. Euphytica 167, 203–216 (2009). https://doi.org/10.1007/s10681-008-9864-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9864-5

Keywords

Navigation