Skip to main content
Log in

Molecular cloning, characterization and expression of two rapeseed (Brassica napus L.) cDNAs orthologous to Arabidopsis thaliana phenylalanine ammonia-lyase 1

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Phenylalanine ammonia-lyase (PAL) plays important roles in determining flavonoid- and lignin-related traits. Two PAL full-length cDNAs, BnPAL1-1 and BnPAL1-2, were isolated from Brassica napus. BnPAL1-1 is 2460 bp encoding a 722-aa protein, while BnPAL1-2 is 2396 bp encoding a 719-aa protein. BnPAL1-1 shares 86.8% nucleotide identities and 94.9%/97.0% identities/positives at protein level to BnPAL1-2. NCBI BLAST, pairwise alignment and preferential amino acid analysis indicated that they are orthologs of Arabidopsis thaliana PAL1 (AtPAL1), suggesting that the divergence of AtPAL1 and AtPAL2 preceded the divergence of genera Arabidopsis and Brassica. Southern hybridization and EST analysis showed that B. napus has 2–6 orthologs of AtPAL1. High ratios of synonymous to non-synonymous substitutions suggest that in Brassicaceae PAL1 orthologs evolve under high pressure of purification selection, while among PAL1 paralogs this pressure is a little lower. Escherichia coli-expressed 6 × His-tagged BnPAL1-1 and BnPAL1-2 were both bioactive, but BnPAL1-2 was much higher in tested catalytic activity. BnPAL1-1 and BnPAL1-2 are transcribed in all the 11 organs tested, but most abundant in flower. BnPAL1-1 shows declined expression in late-stage seed, and BnPAL1-2 shows stronger organ specificity. Transcription of these two genes in middle and late stages of seed development of yellow-seeded line L2 is obviously lower than near-isogenic black-seeded line L1, indicating the correlation of yellow-seed trait to down regulation of PAL transcription, but this is probably caused by suppressed seed-specific upstream regulatory signal or by seed-specific feedback inhibition from downstream pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAF:

Days after flowering

PAL:

Phenylalanine ammonia-lyase

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse-transcriptase-polymerase chain reaction

UTR:

Untranslated region

References

  • Abraham V, Bhatia CR (1986) Development of strains with yellow-seed coat in Indian mustard (Brassica juncea Czern & Coss). Plant Breed 97:86–88

    Article  Google Scholar 

  • Allwood EG, Davies DR, Gerrish C, Ellis BE, Bolwell GP (1999) Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett 457:47–52

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Matsuda SPT (2003) Seeing red. Science 299:352–353

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 254:1351–1362

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T (2004) Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry 43:11403–11416

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Pang Y, Liao Z, Zhang L, Sun X, Lu Y, Wang S, Tang K (2003) Molecular cloning and characterization of a mannose-binding lectin gene from Crinum asiaticum. J Plant Physiol 160:913–920

    Article  PubMed  CAS  Google Scholar 

  • Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Cramer CL, Edwards K, Dron M, Liang X, Deldine SL, Bolwell GP, Dixon RA, Lamb CJ, Schuch WW (1989) Phenylalanine ammonia-lyase gene organization and structure. Plant Mol Biol 12:367–383

    Article  CAS  Google Scholar 

  • Fukasawa-Akada T, Kung S-D, Watson JC (1996) Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Mol Biol 30:711–722

    Article  PubMed  CAS  Google Scholar 

  • Geourjon C, Deléage G (1995) SOPMA: significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Cabios 11:681–684

    PubMed  CAS  Google Scholar 

  • Gowri G, Paiva NL, Dixon RA (1991) Stress response in alfalfa (Medicago sativa L.). 12. Sequence analysis of phenylalanine ammonia-lyase (PAL) cDNA clones and appearance of PAL transcripts in elicitor-treated cell cultures and developing plants. Plant Mol Biol 17:415–429

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase – A database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  PubMed  CAS  Google Scholar 

  • Joos HJ, Hahlbrock K (1992) Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.). Genomic complexity, structural comparison of 2 selected genes and modes of expression. Eur J Biochem 204:621–629

    Article  PubMed  CAS  Google Scholar 

  • Jung H-JG, Ni W (1998) Lignification of plant cell walls: impact of genetic manipulation. Proc Natl Acad Sci 95:12742–12743

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kronstad JW, Ellis BE (1996) Purification and characterization of phenylalanine ammonia-lyase from Ustilago maydis. Phytochemistry 43:351–357

    Article  CAS  Google Scholar 

  • Korber B (2000) HIV signature and sequence variation analysis. In: Rodrigo AG, Learn GH (eds) Computational analysis of HIV molecular sequences. Kluwer Academic Publishers, Dordrecht, pp 55–72

    Google Scholar 

  • Koukol J, Conn EE (1961) The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem 236:2692–2698

    PubMed  CAS  Google Scholar 

  • Kumar A, Ellis BE (2001) The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol 127:230–239

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    PubMed  CAS  Google Scholar 

  • Langer B, Röther D, Rétey J (1997) Identification of essential amino acids in phenylalanine ammonia-lyase by site-directed mutagenesis. Biochemistry 36:10867–10871

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Li J-n (2004) The relationship of color formation with related enzymes and protein contents in the seed coat of oilseed rape (Brassica napus). Agri Sci China 3:384–391

    Google Scholar 

  • Lois R, Dietrich A, Hahlbrock K, Schulz W (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation, and identification of elicitor and light-responsive cis-acting elements. EMBO J 8:1641–1648

    PubMed  CAS  Google Scholar 

  • Lois R, Hahlbrock K (1992) Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate-CoA ligase gene families in various organs of parsley plants. Z Naturforsch C 47:90–94

    PubMed  CAS  Google Scholar 

  • Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG (2006) Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet 113:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucl Acids Res 32:W327–W331

    Article  PubMed  CAS  Google Scholar 

  • Marles MS, Gruber MY (2004) Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric 84:251–262

    Article  CAS  Google Scholar 

  • Minami E, Ozeki Y, Matsuoka M, Koizuka N, Tanaka Y (1989) Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur J Biochem 185:19–25

    Article  PubMed  CAS  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  • Ritter H, Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16:3426–3436

    Article  PubMed  CAS  Google Scholar 

  • Rosler J, Krekel F, Amrhein N, Schmid J (1997) Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol 113:175–179

    Article  PubMed  CAS  Google Scholar 

  • Röther D, Poppe L, Morlock G, Viergutz S, Rétey J (2002) An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum. Eur J Biochem 269:3065–3075

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, NewYork

    Google Scholar 

  • Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem 39:253–262

    Article  CAS  Google Scholar 

  • Schuster B, Rétey J (1994) Serine-202 is the putative precursor of the active site dehydroalanine of phenylalanine ammonia lyase. Site-directed mutagenesis studies on the enzyme from parsley (Petroselinum crispum L.). FEBS Lett 349:252–254

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucl Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Sewalt VJH, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    PubMed  CAS  Google Scholar 

  • Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64:153–161

    Article  PubMed  CAS  Google Scholar 

  • Shaw NM, Bolwell GP, Smith C (1990) Wound-induced phenylalanine ammonia-lyase in potato (Solanum tuberosum) tuber discs. Significance of glycosylation and immunolocalization of enzyme subunits. Biochem J 267:163–170

    PubMed  CAS  Google Scholar 

  • Subramaniam R, Reinold S, Molitor EK, Douglas CJ (1993) Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes. Plant Physiol 102:71–83

    Article  PubMed  CAS  Google Scholar 

  • Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE (1992) Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Biotechnology 10:686–690

    Article  PubMed  CAS  Google Scholar 

  • Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327–338

    Article  PubMed  CAS  Google Scholar 

  • Whetten RW, Sederoff RR (1992) Phenylalanine ammonia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clones. Plant Physiol 98:380–386

    Article  PubMed  CAS  Google Scholar 

  • Xu BB, Li JN, Zhang XK, Wang R, Xie LL, Chai YR (2007) Cloning and molecular characterization of a functional flavonoid 3-hydroxylase gene from Brassica napus. J Plant Physiol 164:350–363

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Tanaka Y, Sriprasertsak P, Kato H, Hashimoto T, Kawamata S, Ichinose Y, Kato H, Shiraishi T, Oku H (1992) Phenylalanine ammonia-lyase genes from Pisum sativum: structure, organ-specific expression and regulation by fungal elicitor and suppressor. Plant Cell Physiol 33:715–725

    CAS  Google Scholar 

  • Zeng Y, Yang T (2002) RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol Biol Rep 20:417a–417e

    Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation Major Program (30330400), the National “863” Project program (20060110Z1024), and the Chongqing Municipal Natural Science Foundation Major Program (8446) respectively. We thank Dr Rui Wang from Chongqing Rapeseed Technology Research Center for providing the B. napus stock line 5B for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Na Li or You-Rong Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Jiang, HL., Lei, B. et al. Molecular cloning, characterization and expression of two rapeseed (Brassica napus L.) cDNAs orthologous to Arabidopsis thaliana phenylalanine ammonia-lyase 1 . Euphytica 159, 1–16 (2008). https://doi.org/10.1007/s10681-007-9448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9448-9

Keywords

Navigation