Skip to main content
Log in

Narratives of quantum theory in the age of quantum technologies

  • Original Paper
  • Published:
Ethics and Information Technology Aims and scope Submit manuscript

Abstract

Quantum technologies can be presented to the public with or without introducing a strange trait of quantum theory responsible for their non-classical efficiency. Traditionally the message was centered on the superposition principle, while entanglement and properties such as contextuality have been gaining ground recently. A less theoretical approach is focused on simple protocols that enable technological applications. It results in a pragmatic narrative built with the help of the resource paradigm and principle-based reconstructions. I discuss the advantages and weaknesses of these methods. To illustrate the importance of new metaphors beyond the Schrödinger cat, I briefly describe a non-mathematical narrative about entanglement that conveys an idea of some of its unusual properties. If quantum technologists are to succeed in building trust in their work, they ought to provoke an aesthetic perception in the public commensurable with the mathematical beauty of quantum theory experienced by the physicist. The power of the narrative method lies in its capacity to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aharonov, Y., Botero, A., Popescu, S., Reznik, B., & Tollaksen, J. (2002). Revisiting Hardy’s paradox: Counterfactual statements, real measurements, entanglement and weak values. Physics Letters A, 301, 130–138.

    Article  MATH  MathSciNet  Google Scholar 

  • Aharonov, Y., Popescu, S., Rohrlich, D., & Skrzypczyk, P. (2013). Quantum Cheshire cats. New Journal of Physics, 15, 113015.

    Article  Google Scholar 

  • Aharonov, Y., & Rohrlich, D. (2005). Quantum paradoxes: Quantum theory for the perplexed. Weinheim: Wiley.

    Book  MATH  Google Scholar 

  • Aspect, A. (2004). John Bell and the second quantum revolution. In J. Bell (Ed.), Speakable and unspeakable in quantum mechanics, revised edition. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barnum, H., Barrett, J., Leifer, M., & Wilce, A. (2007). Generalized no-broadcasting theorem. Physical Review Letters, 99(24), 240501.

    Article  Google Scholar 

  • Barrett, J. (2007). Information processing in non-signalling theories. Physical Review A, 75, 032304.

    Article  Google Scholar 

  • Bell, J. (1964). On the Einstein–Podolsky–Rosen paradox. Physica, 1, 195–200.

    Google Scholar 

  • Bennett, C. & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE international conference on computers, systems and signal processing, pp. 175–179, New York.

  • Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., & Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and epr channels. Physical Review Letters, 70, 1895–1899.

    Article  MATH  MathSciNet  Google Scholar 

  • Birkhoff, G. & von Neumann, J. (1936). The logic of quantum mechanics. Annals of mathematics, 37, 823–843. Reprinted in: von Neumann, J. (1961). Collected works (Vol. IV, pp. 105–125). Oxford: Pergamon Press.

  • Brandão, F. G. S. L., Horodecki, M., Oppenheim, J., Renes, J. M., & Spekkens, R. W. (2013). Resource theory of quantum states out of thermal equilibrium. Physical Review Letters, 111, 250404.

    Article  Google Scholar 

  • Brukner, Č. & Zeilinger, A. (2003). Information and fundamental elements of the structure of quantum theory. In L. Castell & O. Ischebeck (Eds.), Time, quantum, information (pp. 323–356). New York: Springer-Verlag. Retrieved from arXiv:quant-ph/0212084.

  • Bub, J. (2004). Why the quantum? Studies in the History and Philosophy of Modern Physics, 35(2), 241–266.

    Article  MATH  MathSciNet  Google Scholar 

  • Bub, J. (2016). Bananaworld: Quantum mechanics for primates. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Cabello, A. (2012). The contextual computer. In H. Zenil (Ed.), A computable universe: Understanding and exploring nature as computation (pp. 595–604). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Chalmers, D. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2, 200–219.

    Google Scholar 

  • Chalmers, D. (1996). The conscious mind. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Chiribella, G., d’Ariano, G. M., & Perinotti, P. (2011). Informational derivation of quantum theory. Physical Review A, 84, 012311.

    Article  Google Scholar 

  • Chiribella, G., & Spekkens, R. (Eds.). (2016). Quantum theory: Informational foundations and foils. New York: Springer.

    MATH  Google Scholar 

  • Clifton, R., Bub, J., & Halvorson, H. (2003). Characterizing quantum theory in terms of information-theoretic constraints. Foundations of Physics, 33(11), 1561–1591.

    Article  MATH  MathSciNet  Google Scholar 

  • Coecke, B. (2006). Kindergarten quantum mechanics. In G. Adenier, A. Khrennikov, & T. Nieuwenhuizen, (Eds.), Quantum theory: Reconsiderations of foundations-3 (Vol. 810 of AIP Conference Proceedings, pp. 81–98). Melville, NY: American Institute of Physics. Retrieved from arXiv:quant-ph/0510032.

  • Coecke, B. (2010). Quantum picturalism. Contemporary Physics, 51, 59–83.

    Article  Google Scholar 

  • Coecke, B., Fritz, T., & Spekkens, R. W. (2016). A mathematical theory of resources. Information and Computation, 250, 59–86.

    Article  MATH  MathSciNet  Google Scholar 

  • Coecke, B., & Kissinger, A. (2017). Picturing quantum processes: A first course in quantum theory and diagrammatic reasoning. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Coecke, B., Paquette, E . O., & Pavlovic, D. (2010). Classical and quantum structuralism. In I. Mackie & S. Gay (Eds.), Semantic techniques for quantum computation (pp. 29–69). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cohen-Tannoudji, C., Diu, B., & Laloë, F. (1973). Mécanique quantique. Paris: Hermann.

    Google Scholar 

  • Cross, R. (2000). Perichoresis, deification, and christological predication in John of Damascus. Mediaeval Studies, 62, 69–124.

    Article  Google Scholar 

  • Davies, S. R., & Macnaghten, P. (2010). Narratives of mastery and resistance: Lay ethics of nanotechnology. NanoEthics, 4, 141–151.

    Article  Google Scholar 

  • Dirac, P. (1930). The principles of quantum mechanics. Oxford: Clarendon.

    MATH  Google Scholar 

  • Dupuy, J.-P. (2010). The narratology of lay ethics. NanoEthics, 4, 153–170.

    Article  Google Scholar 

  • Dupuy, J.-P., & Grinbaum, A. (2004). Living with uncertainty: Toward the ongoing normative assessment of nanotechnology. Techné: Research in Philosophy and Technology, 8(2), 4–25.

    Google Scholar 

  • Durand, E. (2005). La périchorèse des personnes divines. Paris: Cerf.

    Google Scholar 

  • Dyson, F. (1958). Innovation in physics. Scientific American, 199, 74–82.

    Article  Google Scholar 

  • Eckert, A. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67, 661–663.

    Article  MATH  MathSciNet  Google Scholar 

  • Einstein, A. (1917). Letter to F. Klein. Quoted in Pais, A.‘Subtle is the Lord...’: The science and the life of Albert Ein-stein. Oxford University Press, 1982, p. 325.

  • Einstein, A. (1934). On the method of theoretical physics. Philosophy of Science, 1, 163–169.

    Article  Google Scholar 

  • Felt, U. & Wynne, B. (2007). Taking European knowledge society seriously. Technical report, Expert Group on Science and Governance to the Science, Economy and Society Directorate, Directorate-General for Research, European Commission, Brussels.

  • Fock, V. (1976). Nachala kvantovoi mehaniki. Moscow: Nauka (1st ed.: Kubuch, Leningrad, 1932).

  • Gisin, N. (2014). Quantum chance: Nonlocality, teleportation and other quantum marvels. New York: Springer.

    Book  MATH  Google Scholar 

  • Gould, J. (1970). The philosophy of Chrysippus. Albany: SUNY Press.

    Book  Google Scholar 

  • Grinbaum, A. (2003). Elements of information-theoretic derivation of the formalism of quantum theory. International Journal of Quantum Information, 1(3), 289–300.

    Article  MATH  Google Scholar 

  • Grinbaum, A. (2007). Reconstruction of quantum theory. British Journal for the Philosophy of Science, 58, 387–408.

    Article  MATH  MathSciNet  Google Scholar 

  • Grinbaum, A. (2012). Which fine-tuning arguments are fine? Foundations of Physics, 42, 615–631.

    Article  MATH  Google Scholar 

  • Grinbaum, A. (2014). Mécanique des étreintes. Paris: Encre Marine.

    Google Scholar 

  • Grinbaum, A. (2017). How device-independent approaches change the meaning of physical theory. Studies in the History and Philosophy of Modern Physics. doi:10.1016/j.shpsb.2017.03.003.

  • Grinbaum, A., & Groves, C. (2013). What is “responsible” about responsible innovation? Understanding the ethical issues. In R. Owen, J. Bessant, & M. Heintz (Eds.), Responsible innovation: Managing the responsible emergence of science and innovation in society (p. 119). New York: Wiley.

    Chapter  Google Scholar 

  • Hardy, L. (1992). Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Physical Review Letters, 68, 2981–2984.

    Article  MATH  MathSciNet  Google Scholar 

  • Hardy, L. (1993). Nonlocality for two particles without inequalities for almost all entangled states. Physical Review Letters, 71, 1665–1668.

    Article  MATH  MathSciNet  Google Scholar 

  • Hardy, L. (2000). Quantum theory from five reasonable axioms. Retrieved from arXiv:quant-ph/00101012.

  • Kochen, S., & Specker, E. (1965). Logical structures arising in quantum theory. In J. Addison, L. Henkin, & A. Tarski (Eds.), The Theory of Models (pp. 177–189). Amsterdam: North-Holland.

    Google Scholar 

  • Kochen, S., & Specker, E. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    MATH  MathSciNet  Google Scholar 

  • Landau, L. & Lifshitz, E. (1977). Quantum mechanics. New York: Pergamon Press (1st Russian edition: State RSFSR Publishers, Leningrad, 1948).

  • Landé, A. (1974). Albert Einstein and the quantum riddle. American Journal of Physics, 42(6), 459–464.

    Article  Google Scholar 

  • Linden, N., Popescu, S., Short, A. J., & Winter, A. (2007). Quantum nonlocality and beyond: Limits from nonlocal computation. Physical Review Letters, 99(18), 180502.

    Article  MATH  MathSciNet  Google Scholar 

  • Ludwig, G. (1985). An axiomatic basis for quantum mechanics. New York: Springer.

    Book  MATH  Google Scholar 

  • Mackey, G. (1957). Quantum mechanics and Hilbert space. The American Mathematical Monthly, 64, 45–57.

    Article  MATH  MathSciNet  Google Scholar 

  • Magaña-Loaiza, O., et al. (2016). Exotic looped trajectories of photons in three-slit interference. Nature Communications, 7, 13987.

    Article  Google Scholar 

  • Masanes, L., & Müller, M. (2011). A derivation of quantum theory from physical requirements. New Journal of Physics, 13, 063001.

    Article  Google Scholar 

  • Mashhadi, A. (1995). Students’ conceptions of quantum physics. In C. Bernardini, C. Taristani, & M. Vicentini (Eds.), Thinking Physics for Teaching (pp. 313–328). New York: Springer.

    Chapter  Google Scholar 

  • Mashhadi, A., & Woolnough, B. (1999). Insights into students’ understanding of quantum physics: visualizing quantum entities. European Journal of Physics, 20, 511–516.

    Article  Google Scholar 

  • Mayers, D. & Yao, A. (1998). Quantum cryptography with imperfect apparatus. In FOCS 1998: Proceedings of the 39th annual symposium on foundations of computer science, pp. 503–509. IEEE Computer Society, Los Alamitos, CA, USA.

  • Mermin, N. D. (1990). Boojums all the way through: Communicating science in a prosaic age. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Messiah, A. (1964). Mécanique quantique. Paris: Dunod.

    Google Scholar 

  • Pais, A. (1982). ‘Subtle is the Lord..’: The science and the life of Albert Einstein. Oxford: Oxford University Press.

    Google Scholar 

  • Pawlowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., & Zukowski, M. (2009). Information causality as a physical principle. Nature, 461, 1101–1104.

    Article  Google Scholar 

  • Raussendorf, R., & Briegel, H. J. (2001). A one-way quantum computer. Physical Review Letters, 86, 5188–5191.

    Article  Google Scholar 

  • Rechenberg, H. (1972). Teaching quantum mechanics. In E. Nagy (Ed.), New Trends in Physics Teaching (pp. 105–132)., volume 2 Paris: UNESCO.

    Google Scholar 

  • Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35, 1637.

    Article  MATH  MathSciNet  Google Scholar 

  • Rüdinger, E. (1976). On the teaching of introductory quantum mechanics. American Journal of Physics, 44, 144–148.

    Article  Google Scholar 

  • Russell, B. (1917). The study of mathematics. In Mysticism and logic (pp. 48–59). Other Essays Green and Company: Longmans.

  • Sambursky, S. (1959). Physics of the stoics. Princeton: Princeton University Press.

    Google Scholar 

  • Scarani, V. (2006). Quantum physics: A first encounter: Interference, entanglement, and reality. Oxford: Oxford University Press.

    Google Scholar 

  • Scarani, V. (2010). Six quantum pieces: A first course in quantum physics. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Schrödinger, E. (1935a). Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften, 23, 807–812. English translation in J. Wheeler and W. Zurek, editors. Quantum theory and measurement. Princeton University Press, 1983.

  • Schrödinger, E. (1935b). Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 555–563.

    Article  MATH  Google Scholar 

  • Schrödinger, E. (1936). Probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 32, 446–452.

    Article  MATH  Google Scholar 

  • Shor, P. (1994). Algorithms for quantum computation: Discrete algorithms and factoring. In Proceedings, 35th annual symposium on foundations of computer science. IEEE Press, Los Alamos.

  • Swierstra, T., & Rip, A. (2007). Nano-ethics as NEST-ethics: Patterns of moral argumentation about new and emerging science and technology. NanoEthics, 1, 3–20.

    Article  Google Scholar 

  • Tomonaga, S. (1966). Quantum mechanics. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • van Dam, W. (2000). Nonlocality and communication complexity. PhD thesis, Faculty of Physical Sciences, University of Oxford.

  • Vedral, V. (2012). Decoding reality. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Veitch, V., Mousavian, S. A. H., Gottesman, D., & Emerson, J. (2014). The resource theory of stabilizer quantum computation. New Journal of Physics, 16, 013009.

    Article  MathSciNet  Google Scholar 

  • Wegter-McNelly, K. (2011). The entangled god: Divine relationality and quantum physics. London: Routledge.

    Google Scholar 

  • Wootters, W., & Zurek, W. (1982). A single quantum cannot be cloned. Nature, 299, 802–803.

    Article  MATH  Google Scholar 

  • Zeilinger, A. (2010). Dance of the photons. New York: Farrar Straus Giroux.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Grinbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinbaum, A. Narratives of quantum theory in the age of quantum technologies. Ethics Inf Technol 19, 295–306 (2017). https://doi.org/10.1007/s10676-017-9424-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10676-017-9424-6

Keywords

Navigation