Skip to main content

Advertisement

Log in

Understanding the intertwined nature of rising multiple risks in modern agriculture and food system

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The current agriculture system has become complex and fragile in recent years. With an increase in population, the demand for food is increasing, but the resources such as arable land and water are limited, and clearing forest land for cultivation and over-extraction of groundwater are changing land-use patterns and depleting groundwater resources, which again are responsible for multiple risks in agriculture and food system. The limited land and water resources with increased global population and its demand for food have mainly stressed small farmers. The rising environment, social and economic risks such as crop disease outbreaks, climate risk causing natural hazards such as floods, famine, drought, exposure to chemicals, technology risks such as genetically modified crops, and biofuels, food demand disparities, demographic and dietary changes, financial risk, conflict and political unrest, biological diversity loss, psychological factors in long-term decision making, and emerging complexity within agriculture system network are the some of the examples of multiple risks faced by small farmers in developing nations. Understanding the link among multiple domains such as environment, soil and hydrology, science, technology, finance, psychology, nutrition, and relation and conflicts is vital to study the multiple risks associated with the agriculture system as these domains overlap. Thus, sustainable long-term solutions cannot be confined to a single discipline approach. Therefore, there is a need to understand the intertwined nature of multiple risks affecting farmers. First, the author emphasizes on understanding the interconnected nature of rising multiple risks in modern industrial agriculture and food system in terms of social, environmental, and economic dimensions, this understanding is crucial for sustainable agriculture policy framing. Second, providing policy implications that will help policy makers to develop legalize mechanism to reduce rising risk of hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

This is a general/review article, and it doesn’t contain any scientific data. Any question/ inquires pertaining to the type of data or the attributes of datasets, can be directed to the corresponding author, upon reasonable request.

Code availability

Not Applicable.

References

  • Adamopoulos, T., & Restuccia, D. (2014). The size distribution of farms and international productivity differences. American Economic Review, 104(6), 1667–1697.

    Article  Google Scholar 

  • Adenle, A. A., De Steur, H., Hefferon, K., & Wesseler, J. (2020). Two Decades of GMOs. Science, Technology, and Innovation for Sustainable Development Goals: Insights from Agriculture, Health, Environment, and Energy (pp. 401–412).

  • Adeoti, S. O., Moses, A., & Adedamola, A. M. (2020). Bundling of Insurance with agricultural inputs: A better way of introducing insurance product to farmers. LAP LAMBERT Academic Publishing.

  • Adger, W. N., Pulhin, J. M., Barnett, J., Dabelko, G. D., Hovelsrud, G. K., Levy, M., Oswald Spring, U., & Vogel, C. H. (2014). Human security. Cambridge University Press.

    Google Scholar 

  • Afshin, A., Sur, P. J., Fay, K. A., Cornaby, L., Ferrara, G., Salama, J. S., Mullany, E. C., Abate, K. H., Abbafati, C., Abebe, Z., & Afarideh, M. (2019). Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 393(10184), 1958–1972.

  • Aggarwal, P., Roy, J., Pathak, H., Naresh Kumar, S., Venkateswarlu, B., Ghosh, A., & Ghosh, D. (2022). Managing climatic risks in agriculture. In Indian Agriculture Towards 2030: Pathways for Enhancing Farmers’ Income, Nutritional Security and Sustainable Food and Farm Systems (pp. 83–108). Singapore: Springer Nature Singapore.

  • Ali, S. A. (2020). Sustainable management of water resources and hydropower projects in the context of the food-energy-water Nexus in the Mekong River Basin, Virginia Tech.

  • Al-Rowaily, S. L. (1999). Rangeland of Saudi Arabia and the" Tragedy of Commons". Rangelands Archives, 21(3), 27–29.

    Google Scholar 

  • Anwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: A review. Theoretical and Applied Climatology, 113(1), 225–245.

    Article  Google Scholar 

  • Armah, F. A. (2011). Assessment of pesticide residues in vegetables at the farm gate: Cabbage (Brassica oleracea) cultivation in Cape Coast, Ghana. Research Journal of Environmental Toxicology, 5(3), 180–202.

    Article  CAS  Google Scholar 

  • Aryal, S. K. & Nair, A. (2022). Focus 81–Regional Geopolitics and Sri Lankan Crisis: Options for India.

  • Asante, K. A., & Ntow, W. J. (2009). Status of environmental contamination in Ghana, the perspective of a research scientist. Interdisciplinary Studies on Environmental Chemistry, 2, 253–260.

    Google Scholar 

  • Aydinalp, C., & Cresser, M. S. (2008). The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural and Environmental Sciences, 3(5), 672–676.

    Google Scholar 

  • Barnett, J. (2007). Environmental security and peace. Journal of Human Security, 3(1), 4–16.

    Article  Google Scholar 

  • Barnett, J., & Adger, W. N. (2007). Climate change, human security and violent conflict. Political Geography, 26(6), 639–655.

    Article  Google Scholar 

  • Bayala, J., Sanou, J., Teklehaimanot, Z., Kalinganire, A., & Ouédraogo, S. J. (2014). Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Current Opinion in Environmental Sustainability, 6, 28–34.

    Article  Google Scholar 

  • Boatman, N. D., Parry, H. R., Bishop, J. D., & Cuthbertson, A. G. (2007). Impacts of agricultural change on farmland biodiversity in the UK. In Issues in Environmental Science and Technology. No. 25. Biodiversity under Threat (pp. 1–32).

  • Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J. P., Rolinski, S., Biewald, A., Lotze-Campen, H., Weindl, I., Gerten, D., & Stevanovic, M. (2016). Trade-offs between land and water requirements for large-scale bioenergy production. Gcb Bioenergy, 8(1), 11–24.

    Article  Google Scholar 

  • Bretveld, R. W., Thomas, C. M., Scheepers, P. T., Zielhuis, G. A., & Roeleveld, N. (2006). Pesticide exposure: The hormonal function of the female reproductive system disrupted? Reproductive Biology and Endocrinology, 4(1), 1–14.

    Article  Google Scholar 

  • Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., Ramirez-Villegas, J., Rosenstock, T., Sebastian, L., Thornton, P. K., & Wollenberg, E. (2016). Reducing risks to food security from climate change. Global Food Security, 11, 34–43.

    Article  Google Scholar 

  • Chakraborty, S. C., Luck, J., Hollaway, G., Freeman, A., Norton, R., Garrett, K. A., Percy, K., Hopkins, A., Davis, C., & Karnosky, D. F. (2008). Impacts of global change on diseases of agricultural crops and forest trees. CABI Reviews, (2008), 1–15.

  • Chambers, R. G., & Quiggin, J. (2004). Technological and financial approaches to risk management in agriculture: An integrated approach. Australian Journal of Agricultural and Resource Economics, 48(2), 199–223.

    Article  Google Scholar 

  • Chanana-Nag, N., & Aggarwal, P. K. (2020). Woman in agriculture, and climate risks: Hotspots for development. Climatic Change, 158(1), 13–27.

    Article  Google Scholar 

  • Choksi, P., Singh, D., Singh, J., Mondal, P., Nagendra, H., Urpelainen, J., & DeFries, R. (2021). Sensitivity of seasonal migration to climatic variability in central India. Environmental Research Letters, 16(6), 064074.

  • Christiaensen, L. (2009). Revisiting the global food architecture: lessons from the 2008 food crisis, WIDER Discussion Paper.

  • Chuku, A. C., & Chidinma, O. (2009). Increasing resilience and reducing vulnerability in sub-Saharan African agriculture: Strategies for risk coping and management. African Journal of Agricultural Research, 4(11), 1524–1535.

    Google Scholar 

  • Churi, A. J., Mlozi, M. R., Mahoo, H., Tumbo, S. D., & Casmir, R. (2013). A decision support system for enhancing crop productivity of smallholder farmers in semi-arid agriculture. International Journal of Information, 3(8).

  • Coke Hamilton, P. & Nkurunziza, J. (2020). COVID-19 and food security in vulnerable countries. In UN Conference on Trade and Development (UNCTAD).

  • Compton, J., Wiggins, S. & Keats, S. (2010). Impact of the global food crisis on the poor: What is the evidence. London: Overseas Development Institute.

    Google Scholar 

  • Conley, B., & de Waal, A. (2019). The purposes of starvation: Historical and contemporary uses. Journal of International Criminal Justice, 17(4), 699–722.

    Article  Google Scholar 

  • Danoshana, S., & Ravivathani, T. (2019). The impact of the corporate governance on firm performance: A study on financial institutions in Sri Lanka. SAARJ Journal on Banking and Insurance Research, 8(1), 62–67.

    Article  Google Scholar 

  • Darko, G., & Akoto, O. (2008). Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi, Ghana. Food and Chemical Toxicology, 46(12), 3703–3706.

    Article  CAS  Google Scholar 

  • de Ruiter, H., Macdiarmid, J. I., Matthews, R. B., Kastner, T., Lynd, L. R., & Smith, P. (2017). Total global agricultural land footprint associated with UK food supply 1986–2011. Global Environmental Change, 43, 72–81.

    Article  Google Scholar 

  • De Schutter, O., Jacobs, N., & Clément, C. (2020). A ‘Common Food Policy’ for Europe: How governance reforms can spark a shift to healthy diets and sustainable food systems. Food Policy, 96, 101849.

  • Dercon, S. (2008). Fate and fear: Risk and its consequences in Africa. Journal of African Economies, 17(2), ii97–ii127.

    Google Scholar 

  • Dercon, S., & Christiaensen, L. (2011). Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia. Journal of Development Economics, 96(2), 159–173.

    Article  Google Scholar 

  • Dhont, K., Piazza, J., & Hodson, G. (2021). The role of meat appetite in willfully disregarding factory farming as a pandemic catalyst risk. Appetite, 164, 105279.

  • Diffenbaugh, N.S., & Field, C.B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341(6145), 486–492.

    Article  CAS  Google Scholar 

  • Doss, C., Meinzen-Dick, R., Quisumbing, A., & Theis, S. (2018). Women in agriculture: Four myths. Global Food Security, 16, 69–74.

    Article  Google Scholar 

  • Duncan, B. A. (1997). Women in agriculture in Ghana, Friedrich Ebert Foundation Accra.

  • Duong, T. T., Brewer, T., Luck, J., & Zander, K. (2019). A global review of farmers’ perceptions of agricultural risks and risk management strategies. Agriculture, 9(1), 10.

    Article  Google Scholar 

  • Edmeades, D. C. (2003). The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutrient Cycling in Agroecosystems, 66(2), 165–180.

    Article  CAS  Google Scholar 

  • Eggertsson, T. (1998). Sources of risk, institutions for survival, and a game against nature in premodern Iceland. Explorations in Economic History, 35(1), 1–30.

    Article  Google Scholar 

  • Elferink, M., & Schierhorn, F. (2016). Global demand for food is rising. Can we meet it. Harvard Business Review, 7(04), 2016.

    Google Scholar 

  • Elkind, P. D. (2008). Perceptions of risk, stressors, and locus of control influence intentions to practice safety behaviors in agriculture. Journal of Agromedicine, 12(4), 7–25.

    Article  Google Scholar 

  • Emerick, K., De Janvry, A., Sadoulet, E., & Dar, M.H. (2016). Technological innovations, downside risk, and the modernization of agriculture. American Economic Review, 106(6), 1537–1561.

    Article  Google Scholar 

  • Engel, R. E. (2020). The 2006 Crisis in East Timor: Lessons for Contemporary Peacebuilding. Routledge.

    Book  Google Scholar 

  • Epule, E. T., Peng, C., Lepage, L., & Chen, Z. (2014). The causes, effects and challenges of Sahelian droughts: A critical review. Regional Environmental Change, 14(1), 145–156.

    Article  Google Scholar 

  • Espinosa, R., Tago, D., & Treich, N. (2020). Infectious diseases and meat production. Environmental and Resource Economics, 76(4), 1019–1044.

    Article  Google Scholar 

  • Ezzati, M., & Riboli, E. (2013). Behavioral and dietary risk factors for noncommunicable diseases. New England Journal of Medicine, 369(10), 954–964.

    Article  CAS  Google Scholar 

  • FAO (2019). World fertilizer trends and outlook to 2022. Rome, Italy (p. 40).

  • FAO (2020). Addressing the Impacts of COVID-19 in Food Crises. Food and Agriculture Organization of the United Nations.

  • Fetahi, T. (2019). Eutrophication of Ethiopian water bodies: A serious threat to water quality, biodiversity and public health. African Journal of Aquatic Science, 44(4), 303–312.

    Article  CAS  Google Scholar 

  • Food, U. (2011). The State of Food and Agriculture 2010--2011: Women in agriculture: Closing the gender gap for development. FAO Home, Retrieved from 1 November 2011.

  • Framstad, E., Berglund, H., Gundersen, V., Heikkilä, R., Lankinen, N., Peltola, T., Risbøl, O., & Weih, M. (2009). Increased biomass harvesting for bioenergy. Nordic Council of Ministers.

  • GAIN (2020). Impact of COVID-19 on food systems: a situation report.

  • Gandhi, V. P. & Bhamoriya, V. (2011). Groundwater irrigation in India. India infrastructure report (p. 90).

  • Gaupp, F., Hall, J., Mitchell, D., & Dadson, S. (2019). Increasing risks of multiple breadbasket failure under 1.5 and 2 C global warming. Agricultural Systems, 175, 34–45.

    Article  Google Scholar 

  • Gilbert, C. L., & Morgan, C. W. (2010). Food price volatility. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 3023–3034.

    Article  CAS  Google Scholar 

  • Girdžiūtė, L. (2012). Risks in agriculture and opportunities of their integrated evaluation. Procedia-Social and Behavioral Sciences, 62, 783–790.

    Article  Google Scholar 

  • Gisi, U. (2014). Assessment of selection and resistance risk for demethylation inhibitor fungicides in Aspergillus fumigatus in agriculture and medicine: A critical review. Pest Management Science, 70(3), 352–364.

    Article  CAS  Google Scholar 

  • Godde, C. M., de Boer, I. J., Ermgassen, E. Z., Herrero, M., van Middelaar, C. E., Muller, A., Röös, E., Schader, C., Smith, P., Van Zanten, H. H., & Garnett, T. (2020). Soil carbon sequestration in grazing systems: Managing expectations. Climatic Change, 161(3), 385–391.

    Article  CAS  Google Scholar 

  • Graeub, B. E., Chappell, M. J., Wittman, H., & Ledermann, S. (2016). The state of family farms in the world. World Development, 87, 1–15.

    Article  Google Scholar 

  • Gras, C., & Hernández, V. (2014). Agribusiness and large-scale farming: Capitalist globalisation in Argentine agriculture. Canadian Journal of Development Studies/revue Canadienne D’études Du Développement, 35(3), 339–357.

    Article  Google Scholar 

  • Hall, C. M. (2019). Biological invasion, biosecurity, tourism, and globalisation. Edward Elgar Publishing.

    Book  Google Scholar 

  • Halstead, N. T., McMahon, T. A., Johnson, S. A., Raffel, T. R., Romansic, J. M., Crumrine, P. W., & Rohr, J. R. (2014). Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecology Letters, 17(8), 932–941.

    Article  Google Scholar 

  • Hansen, J., Hellin, J., Rosenstock, T., Fisher, E., Cairns, J., Stirling, C., Lamanna, C., van Etten, J., Rose, A., & Campbell, B. (2019). Climate risk management and rural poverty reduction. Agricultural Systems, 172, 28–46.

    Article  Google Scholar 

  • Hardaker, J. B., Huirne, R. B. M., Anderson, J. R., & Lien, G. (2004). Decision analysis with preferences unknown. In Coping with risk in agriculture: Applied decision analysis (pp. 126–139). Wallingford UK: CABI, 2015.

  • Hazell, P., Poulton, C., Wiggins, S., & Dorward, A. (2010). The future of small farms: Trajectories and policy priorities. World Development, 38(10), 1349–1361.

    Article  Google Scholar 

  • Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T., McCracken, D., Moritz, R. F., Niemelä, J., Rebane, M., & Wascher, D. (2008). Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe–A review. Agriculture, Ecosystems & Environment, 124(1–2), 60–71.

    Article  Google Scholar 

  • Hill, H. & de Sousa Saldanha, J. M. (2001). East Timor: development challenges for the world's newest nation, Institute of Southeast Asian Studies.

  • HLPE (2013). Investing in smallholder agriculture for food security: a report by the high level panel of experts on food security and nutrition. HPLE report no. 6, Food and Agriculture Organization Rome.

  • HLPE A. (2017). Nutrition and food systems. HLPE.

    Google Scholar 

  • Holden, P. B., Edwards, N. R., Gerten, D., & Schaphoff, S. (2013). A model-based constraint on CO2 fertilisation. Biogeosciences, 10(1), 339–355.

    Article  Google Scholar 

  • Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity? Biological Conservation, 122(1), 113–130.

    Article  Google Scholar 

  • Holmer, M. (2010). Environmental issues of fish farming in offshore waters: Perspectives, concerns and research needs. Aquaculture Environment Interactions, 1(1), 57–70.

    Article  Google Scholar 

  • Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50), 19691–19696.

    CAS  Google Scholar 

  • Hu, F. B., Manson, J. E., & Willett, W. C. (2001). Types of dietary fat and risk of coronary heart disease: A critical review. Journal of the American College of Nutrition, 20(1), 5–19.

    Article  Google Scholar 

  • Hunt, J. M. (2005). The potential impact of reducing global malnutrition on poverty reduction and economic development. Asia Pacific Journal of Clinical Nutrition, 14.

  • IPCC, C. (2019). change and land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.

  • Islam, M. M., & Al Mamun, M. A. (2020). Beyond the risks to food availability–linking climatic hazard vulnerability with the food access of delta-dwelling households. Food Security, 12(1), 37–58.

    Article  Google Scholar 

  • Jin, Y. & Turvey, C. G. (2002). Hedging financial and business risks in agriculture with commodity‐linked loans. Agricultural Finance Review.

  • Kamorudeen, R. T., Adedokun, K. A., & Olarinmoye, A. O. (2020). Ebola outbreak in West Africa, 2014–2016: Epidemic timeline, differential diagnoses, determining factors, and lessons for future response. Journal of Infection and Public Health, 13(7), 956–962.

    Article  Google Scholar 

  • Kang, M. G. (2005). An introduction to market-based instruments for agriculture price risk management. Rome, Italy: Food and Agriculture Organization of the United Nations.

  • Kihara, J., Nziguheba, G., Zingore, S., Coulibaly, A., Esilaba, A., Kabambe, V., Njoroge, S., Palm, C., & Huising, J. (2016). Understanding variability in crop response to fertilizer and amendments in sub-Saharan Africa. Agriculture, Ecosystems & Environment, 229, 1–12.

    Article  CAS  Google Scholar 

  • Kim, D. -W., & Cha, C. -J. (2021). Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Experimental and Molecular Medicine, 53(3), 301–309.

    Article  CAS  Google Scholar 

  • Knight, J., Weir, S., & Woldehanna, T. (2003). The role of education in facilitating risk-taking and innovation in agriculture. The Journal of Development Studies, 39(6), 1–22.

    Article  Google Scholar 

  • Komarek, A. M., De Pinto, A., & Smith, V. H. (2020). A review of types of risks in agriculture: What we know and what we need to know. Agricultural Systems, 178, 102738.

  • Kumar, P. (2022). A critical evaluation of air quality index models (1960–2021). Environmental Monitoring and Assessment, 194(5), 324.

    Article  Google Scholar 

  • Kurdyś-Kujawska, A., Strzelecka, A., & Zawadzka, D. (2021). The impact of crop diversification on the economic efficiency of small farms in Poland. Agriculture, 11(3), 250.

    Article  Google Scholar 

  • Lacasaña, M., López-Flores, I., Rodríguez-Barranco, M., Aguilar-Garduño, C., Blanco-Muñoz, J., Pérez-Méndez, O., Gamboa, R., Bassol, S., & Cebrian, M. E. (2010). Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers. Toxicology and Applied Pharmacology, 243(1), 19–26.

    Article  Google Scholar 

  • Ladányi, M., & Horváth, L. (2010). A review of the potential climate change impact on insect populations- general and agricultural aspects. Applied Ecology and Environmental Research, 8(2), 143–152.

    Article  Google Scholar 

  • Laha, M., & Arambagh, W. (2017). Irrigation and groundwater hazards in India. Transactions of the Institute of Indian Geographers 39, 237–252.

    Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1–2), 1–22.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, L., Chen, W. & Wei, X. (2011). Notice of retraction: Research on the spatial distribution of agricultural land use based on the concept of “two types of agriculture”—Taking Chengdu as an example. In 2011 International conference on e-business and e-government (ICEE), IEEE.

  • López, S. L., Aiassa, D., Benítez-Leite, S., Lajmanovich, R., Manas, F., Poletta, G., Sánchez, N., Simoniello, M. F., & Carrasco, A. E. (2012). Pesticides used in South American GMO-based agriculture: A review of their effects on humans and animal models. Advances in Molecular Toxicology, 6, 41–75.

    Article  Google Scholar 

  • Lowder, S. K., Sánchez, M. V., & Bertini, R., (2019). Farms, family farms, farmland distribution and farm labour: What do we know today?

  • Lowder, S. K., Sánchez, M. V., & Bertini, R. (2021). Which farms feed the world and has farmland become more concentrated? World Development, 142, 105455.

    Article  Google Scholar 

  • Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Development, 87, 16–29.

    Article  Google Scholar 

  • Malik, V. S., Willett, W. C., & Hu, F. B. (2013). Global obesity: Trends, risk factors and policy implications. Nature Reviews Endocrinology, 9(1), 13–27.

    Article  Google Scholar 

  • Marambe, B. (2022). Sri Lanka needs a return to good agricultural practices.

  • Mariconda, P. R. (2014). Technological risks, transgenic agriculture and alternatives. Scientiae Studia, 12, 75–104.

    Article  Google Scholar 

  • Marlow, H. J., Hayes, W. K., Soret, S., Carter, R. L., Schwab, E. R., & Sabate, J. (2009). Diet and the environment: Does what you eat matter? The American Journal of Clinical Nutrition, 89(5), 1699S–1703S.

    Article  CAS  Google Scholar 

  • Mazibuko, N., & Oladele, O. (2012). Use of storage facilities by small-scale farmers in the Lejweleputswa District Free State, South Africa. Life Science Journal, 9(3), 1620–1624.

    Google Scholar 

  • McCoy, C. A., Carruth, A. K., & Reed, D. B. (2002). Women in agriculture: Risks for occupational injury within the context of gendered role. Journal of Agricultural Safety and Health, 8(1), 37.

    Article  CAS  Google Scholar 

  • McIntosh, C., Sarris, A., & Papadopoulos, F. (2013). Productivity, credit, risk, and the demand for weather index insurance in smallholder agriculture in Ethiopia. Agricultural Economics, 44(4–5), 399–417.

    Article  Google Scholar 

  • McKinlay, R., Plant, J. A., Bell, J. N. B., & Voulvoulis, N. (2008). Endocrine disrupting pesticides: implications for risk assessment. Environment International, 34(2), 168–183.

    Article  CAS  Google Scholar 

  • Meyfroidt, P., Carlson, K. M., Fagan, M. E., Gutiérrez-Vélez, V. H., Macedo, M. N., Curran, L. M., DeFries, R. S., Dyer, G. A., Gibbs, H. K., Lambin, E. F., & Morton, D. C. (2014). Multiple pathways of commodity crop expansion in tropical forest landscapes. Environmental Research Letters, 9(7), 074012.

    Article  Google Scholar 

  • Mohapatra, S. (2018). Climate Change. Routledge.

    Google Scholar 

  • Moiseev, A., & Jurevič, K. A. (2015). Simulation of insurance risks in agriculture. Journal of Applied Engineering Science, 13(4), 257–264.

    Article  Google Scholar 

  • Nagayets, O. (2005). Small farms: Current status and key trends. The Future of Small Farms, 355, 26–29.

    Google Scholar 

  • Natrajan, B., & Jacob, S. (2018). ‘provincialising’vegetarianism putting Indian food habits in their place. Economic and Political Weekly, 53(9), 54–64.

    Google Scholar 

  • Nendel, C., Reckling, M., Debaeke, P., Schulz, S., Berg-Mohnicke, M., Constantin, J., Fronzek, S., Hoffmann, M., Jakšić, S., Kersebaum, K. C., & Klimek-Kopyra, A. (2023). Future area expansion outweighs increasing drought risk for soybean in Europe. Global Change Biology, 29(5), 1340–1358.

    Article  CAS  Google Scholar 

  • Nijdam, D., Rood, T., & Westhoek, H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy, 37(6), 760–770.

    Article  Google Scholar 

  • Odening, M. & Shen, Z. (2014). Challenges of insuring weather risk in agriculture. Agricultural Finance Review.

  • Omwoyo, C. O. (2021). Assessment of yield losses and farmers’ perceptions on control practices of fall armyworm: The case of maize infestation in trans-nzoia county. University of Nairobi.

    Google Scholar 

  • Ostle, N. J., Levy, P. E., Evans, C. D., & Smith, P. (2009). UK land use and soil carbon sequestration. Land Use Policy, 26, S274–S283.

    Article  Google Scholar 

  • Ostrom, E. (2008). Tragedy of the commons. The new Palgrave Dictionary of Economics 2.

  • Otekunrin, O. A., Otekunrin, O. A., Momoh, S., & Ayinde, I. A. (2019). How far has Africa gone in achieving the zero hunger target? Evidence from Nigeria. Global Food Security, 22, 1–12.

    Article  Google Scholar 

  • Patil, B., & Babus, V. S. (2018). Role of women in agriculture. International Journal of Applied Research 4(12), 109–114.

    Google Scholar 

  • Pattnaik, I., Lahiri-Dutt, K., Lockie, S., & Pritchard, B. (2018). The feminization of agriculture or the feminization of agrarian distress? Tracking the trajectory of women in agriculture in India. Journal of the Asia Pacific Economy, 23(1), 138–155.

    Article  Google Scholar 

  • Pelka, N., Musshoff, O., & Weber, R. (2015). Does weather matter? How rainfall affects credit risk in agricultural microfinance. Agricultural Finance Review, 75(2), 194–212.

    Article  Google Scholar 

  • Pielke Sr, R. A., Adegoke, J. O., Chase, T. N., Marshall, C. H., Matsui, T., & Niyogi, D. (2007). A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agricultural and Forest Meteorology, 142(2–4), 234–254.

    Article  Google Scholar 

  • Pingali, P. & Khwaja, Y. (2004). Globalisation of Indian diets and the transformation of food supply systems.

  • Pingali, P., Khwaja, Y., & Meijer, M. (2005). Commercializing small farms: Reducing transaction cost.

  • Pires, G. F., Abrahão, G. M., Brumatti, L. M., Oliveira, L. J., Costa, M. H., Liddicoat, S., Kato, E., & Ladle, R. J. (2016). Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in Northern Brazil. Agricultural and Forest Meteorology, 228, 286–298.

    Article  Google Scholar 

  • Porter, J. H., Parry, M. L., & Carter, T. R. (1991). The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology, 57(1–3), 221–240.

    Article  Google Scholar 

  • Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agriculture, Ecosystems & Environment, 220, 164–174.

    Article  CAS  Google Scholar 

  • Pradhan, P., Reusser, D. E., & Kropp, J. P. (2013). Embodied greenhouse gas emissions in diets. PloS One, 8(5), e62228.

    Article  CAS  Google Scholar 

  • Rajeevan, M., Bhate, J. & Jaswal, A. K. (2008). Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters, 35(18).

  • Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22(1).

  • Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657.

    Article  CAS  Google Scholar 

  • Richards, M. B., Wollenberg, E., & van Vuuren, D. (2018). National contributions to climate change mitigation from agriculture: Allocating a global target. Climate Policy, 18(10), 1271–1285.

    Article  Google Scholar 

  • Riwthong, S., Schreinemachers, P., Grovermann, C., & Berger, T. (2017). Agricultural commercialization: Risk perceptions, risk management and the role of pesticides in Thailand. Kasetsart Journal of Social Sciences, 38(3), 264–272.

    Article  Google Scholar 

  • Robinson, G. M. & Carson, D. A. (2015). Handbook on the Globalisation of Agriculture, Edward Elgar Publishing.

  • Rohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A., Hudson, P. J., Jouanard, N., Nguyen, K. H., Ostfeld, R. S., & Remais, J. V. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445–456.

    Article  Google Scholar 

  • Rose, S. K., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D. P., & Weyant, J. (2014). Bioenergy in energy transformation and climate management. Climatic Change, 123(3), 477–493.

    Article  Google Scholar 

  • Rudolphi, J. M., Berg, R. L., & Parsaik, A. (2020). Depression, anxiety and stress among young farmers and ranchers: A pilot study. Community Mental Health Journal, 56, 126–134.

    Article  Google Scholar 

  • Sah, R., Baroth, A., & Hussain, S. A. (2020). First account of spatio-temporal analysis, historical trends, source apportionment and ecological risk assessment of banned organochlorine pesticides along the Ganga River. Environmental Pollution, 263, 114229.

    Article  CAS  Google Scholar 

  • Sahoo, P., & Ashwani, Q. (2020). COVID-19 and Indian economy: Impact on growth, manufacturing, trade and MSME sector. Global Business Review, 21(5), 1159–1183.

    Article  Google Scholar 

  • Schmidhuber, J., Jonathan, P., & Bing, Q. (2020). COVID-19: Channels of transmission to food and agriculture. Covid.

  • Searchinger, T. & Heimlich, R. (2015). Avoiding bioenergy competition for food crops and land.

  • Seleiman, M. F., Selim, S., Alhammad, B. A., Alharbi, B. M. & Juliatti, F. C., (2020). Will novel coronavirus (Covid-19) pandemic impact agriculture, food security and animal sectors? Bioscience Journal, 36(4), 1315–1326.

  • Sharma, R., Shishodia, A., Kamble, S., Gunasekaran, A., & Belhadi, A. (2020). Agriculture supply chain risks and COVID-19: mitigation strategies and implications for the practitioners. International Journal of Logistics Research and Applications. https://doi.org/10.1080/13675567.2020.1830049

  • Sharma, S. (2001). Managing environment: A critique of ‘the tragedy of commons. Journal of Human Ecology, 12(1), 1–9.

    Article  Google Scholar 

  • Shore, M., Jordan, P., Mellander, P. E., Kelly-Quinn, M., & Melland, A. R. (2015). An agricultural drainage channel classification system for phosphorus management. Agriculture, Ecosystems & Environment, 199, 207–215.

    Article  CAS  Google Scholar 

  • Siche, R. (2020). What is the impact of COVID-19 disease on agriculture? Scientia Agropecuaria, 11(1), 3–6.

    Article  Google Scholar 

  • Skees, J. R., Barnett, B. J., & Hartell, J. G. (2006). Innovations in government responses to catastrophic risk sharing for agriculture in developing countries.

  • Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., De Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M., & Jonell, M. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728), 519–525.

    Article  CAS  Google Scholar 

  • Stein, A. J. (2010). Global impacts of human mineral malnutrition. Plant and Soil, 335(1), 133–154.

    Article  CAS  Google Scholar 

  • Subbiah, M., Mitchell, S. M., & Call, D. R. (2016). Not all antibiotic use practices in food-animal agriculture afford the same risk. Journal of Environmental Quality, 45(2), 618–629.

    Article  CAS  Google Scholar 

  • Svendsen, S. V. (2007). Lock-in of farmers in agricultural cooperatives (pp. 113–135). Springer.

    Google Scholar 

  • Taffesse, A. & Minten, B. (2020). Response to the Covid-19 pandemic in Ethiopia–some reflections. Research Note Washington DC: IFPRI.

  • Takahashi, K., Muraoka, R., & Otsuka, K. (2020). Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature. Agricultural Economics, 51(1), 31–45.

    Article  Google Scholar 

  • Tang, F. H., Lenzen, M., McBratney, A., & Maggi, F. (2021). Risk of pesticide pollution at the global scale. Nature Geoscience, 14(4), 206–210.

    Article  CAS  Google Scholar 

  • Thierfelder, C., & Wall, P. C. (2011). Reducing the risk of crop failure for smallholder farmers in Africa through the adoption of conservation agriculture. Innovations as key to the green revolution in Africa, Springer: 1269–1277.

  • Thompson, P. B. (2012). Agriculture, food and society: Philosophy to nanotechnology. WCDS Advances in Dairy Technology, 24, 13.

    Google Scholar 

  • Thomson, A. M., Izaurralde, R. C., Rosenberg, N. J., & He, X. (2006). Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agriculture, Ecosystems and Environment, 114(2–4), 195–209.

    Article  Google Scholar 

  • Toledo, R., Engler, A. & Ahumada, V. (2011). Evaluation of risk factors in agriculture: An application of the analytical hierarchical process (AHP) methodology.

  • Townsend, R. M., & Yaron, J. (2001). The credit risk-contingency system of an Asian development bank. Economic Perspectives-Federal Reserve Bank of Chicago, 25(3), 31–48.

    Google Scholar 

  • Tripathi, S. & Gupta, S. (2021). Haryana. Groundwater Law and Management in India, Springer: 173–187.

  • Twigg, M. (2017). Adapting to Food Insecurity in Timor-Leste. The State of Environmental Migration 2017.

  • Vanlauwe, B., Kihara, J., Chivenge, P., Pypers, P., Coe, R., & Six, J. (2011). Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 339(1), 35–50.

    Article  CAS  Google Scholar 

  • Vanloqueren, G., & Baret, P. V. (2008). Why are ecological, low-input, multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural ‘lock-in’case study. Ecological Economics, 66(2–3), 436–446.

    Article  Google Scholar 

  • Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A. J., Hansen, J. W., Ingram, J. S., Jarvis, A., Kristjanson, P., & Lau, C. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15(1), 136–144.

    Article  Google Scholar 

  • von Braun, J. (2010). Food insecurity, hunger and malnutrition: Necessary policy and technology changes. New Biotechnology, 27(5), 449–452.

    Article  Google Scholar 

  • Wimalawansa, S. A., & Wimalawansa, S. J. (2014). Impact of changing agricultural practices on human health: Chronic kidney disease of multi-factorial origin in Sri Lanka. Wudpecker Journal of Agricultural and Research, 3(5), 110–124.

    Google Scholar 

  • Wittneben, B. B., Okereke, C., Banerjee, S. B., & Levy, D. L. (2012). Climate change and the emergence of new organizational landscapes. Organization Studies, 33(11), 1431–1450.

    Article  Google Scholar 

  • Workie, E., Mackolil, J., Nyika, J., & Ramadas, S. (2020). Deciphering the impact of COVID-19 pandemic on food security, agriculture, and livelihoods: A review of the evidence from developing countries. Current Research in Environmental Sustainability, 2, 100014.

    Article  Google Scholar 

  • Yazdani, M., Ernesto D. R. S. G., & Prasenjit C. (2019). A multi-criteria decision-making framework for agriculture supply chain risk management under a circular economy context. Management Decision, 59(8).

  • Yin, J., Yang, D., Zhang, X., Zhang, Y., Cai, T., Hao, Y., Cui, S., & Chen, Y. (2020). Diet shift: Considering environment, health and food culture. Science of the Total Environment, 719, 137484.

    Article  CAS  Google Scholar 

  • Yi-Ren, L. I. U., Xiang, L. I., Qi-Rong, S. H. E. N., & Yang-Chun, X. U. (2013). Enzyme activity in water-stable soil aggregates as affected by long-term application of organic manure and chemical fertiliser. Pedosphere, 23(1), 111–119.

    Article  Google Scholar 

  • Zhao, J., Barry, P. J., & Katchova, A. L. (2008). Signaling credit risk in agriculture: implications for capital structure analysis. Journal of Agricultural and Applied Economics, 40(3), 805–820.

    Article  Google Scholar 

  • Zhen, L., Routray, J. K., Zoebisch, M. A., Chen, G., Xie, G., & Cheng, S. (2005). Three dimensions of sustainability of farming practices in the North China Plain: A case study from Ningjin County of Shandong Province, PR China. Agriculture, Ecosystems & Environment, 105(3), 507–522.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR-CSIO Chandigarh for providing the necessary infrastructure and support to carry out our work.

Funding

The authors received no funding for the work they submitted.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the literature review, critical analysis, manuscript drafting, manuscript editing, and manuscript revision of the paper.

Corresponding author

Correspondence to Prashant Kumar.

Ethics declarations

Conflict of interest

The authors declare that there are not any conflicts of interest.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, P., Kumar, P., Shakya, K.S. et al. Understanding the intertwined nature of rising multiple risks in modern agriculture and food system. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03638-7

Keywords

Navigation