Skip to main content

Advertisement

Log in

Sustainable maize production and climatic change in Nepal: robust role of climatic and non-climatic factors in the long-run and short-run

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Among all other leading challenges of this century, climate change affects people’s livelihoods, particularly those residing in rural areas. This study is the first attempt to assess the Long-run (LR) and Short-run (SR) impacts of climatic factors, namely CO2 emissions, temperature, and precipitation on maize production in Nepal from 1983 to 2016, with the incorporation of cultivated area, fertilizers use, and credit supply as important input factors of maize production. To analyze the time-series dataset, we applied the Autoregressive distributed lag (ARDL), Vector error correction model (VECM), Impulse response function (IRF), and Variance decomposition (VD) methodologies. The results reveal that CO2 emissions and temperature decreased maize production in the short- and long-run while precipitation improved maize production in both cases. Also, cultivated area and fertilizers use significantly contributed to maize production in both periods. The results of the VECM causality indicate that rainfall and cultivated area have two-way causal associations with maize production. The CO2 emissions and credit represent unidirectional causality with maize production in the short-run. Besides, all variables share a significant long-run connection. Finally, the IRF and VD outcomes suggested that the effects of climatic and non-climatic factors are consistent on maize production. The policies recommend that better environmental quality is crucial for sustainable maize production in Nepal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

: NOAA (2021))

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CC:

Climate change

LR:

Long-run

SR:

Short-run

ARDL:

Autoregressive distributed lag

VECM:

Vector error correction model

IRF:

Impulse response function

VD:

Variance decomposition

GDP:

Gross domestic product

ADF:

Augmented dickey-fuller test

PP:

Phillips and perron test

CO2 :

Carbon emission

MP:

Maize production

AR:

Average rainfall

AT:

Average temperature

MA:

Maize area

FC:

Fertilizers consumption

CR:

Credit

ln:

Natural log

\(\mathrm{\rm B}\) :

Beta

\({\alpha }_{0}\) :

Constant term

References

  • Abbas, S. (2020). Climate change and cotton production: An empirical investigation of Pakistan. Environmental Science and Pollution Research, 27, 29580–29588.

    Article  Google Scholar 

  • Abbas, S. (2021). Climate change and major crop production: Evidence from Pakistan. Environmental Science and Pollution Research, 1–9.

  • Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., & Marchesano, K. (2019). Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators, 105, 525–543.

    Article  Google Scholar 

  • Ahmad, S., Tariq, M., Hussain, T., Abbas, Q., Elham, H., Haider, I., & Li, X. (2020). Does Chinese FDI, Climate Change, and CO2 Emissions Stimulate Agricultural Productivity? An Empirical Evidence from Pakistan. Sustainability, 12(18), 7485.

    CAS  Google Scholar 

  • Ahsan, F., Chandio, A. A., & Fang, W. (2020). Climate change impacts on cereal crops production in Pakistan. International Journal of Climate Change Strategies and Management, 12, 257–269.

    Article  Google Scholar 

  • Ali, E. (2021). Farm Households’ Adoption of Climate-smart Practices in Subsistence Agriculture: Evidence from Northern Togo. Environmental Management, 67(5), 949–962.

    Article  Google Scholar 

  • Ali, A., & Erenstein, O. (2017). Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management, 16, 183–194.

    Article  Google Scholar 

  • Ali, S., Liu, Y., Nazir, A., Ishaq, M., & Shah, T. (2020). DOES TECHNICAL PROGRESS MITIGATE CLIMATE EFFECT ON CROPS YIELD IN PAKISTAN? Journal of Animal and Plant Sciences, 30(3), 663–676.

    CAS  Google Scholar 

  • Ammani, A., & Ja’Afaru, A., Aliyu, J., Arab, A. (2012). Climate change and maize production: Empirical evidence from Kaduna State. Nigeria. Journal of Agricultural Extension, 16(1), 1–8.

    Google Scholar 

  • Aryal, J. P., Sapkota, T. B., Khurana, R., Khatri-Chhetri, A., & Jat, M. L. (2019). Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environment, Development and Sustainability, 22, 5045–5075.

    Article  Google Scholar 

  • Bandara, J. S., & Cai, Y. (2014). The impact of climate change on food crop productivity, food prices and food security in South Asia. Economic Analysis and Policy, 44(4), 451–465.

    Article  Google Scholar 

  • Bank, W. 2019. World Bank (2018a): World development indicators. Available at https://data.worldbank.org/indicator.

  • Benhin, J. K. (2006). Climate change and South African agriculture: Impacts and adaptation options. CEEPA discussion paper.

  • Brizmohun, R. (2019). Impact of climate change on food security of small islands: The case of Mauritius, Natural Resources Forum. Wiley Online Library, 43, 154–163.

    Google Scholar 

  • Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society: Series B (methodological), 37(2), 149–163.

    Google Scholar 

  • Casemir, B. H., & Diaw, A. (2018). Analysis of Climate Change Effect on Agricultural Production in Benin. Asian Journal of Agricultural Extension, Economics & Sociology, 24, 1–12.

    Article  Google Scholar 

  • Chandio, A. A., Magsi, H., & Ozturk, I. (2020). Examining the effects of climate change on rice production: Case study of Pakistan. Environmental Science and Pollution Research, 27(8), 7812–7822.

    Article  CAS  Google Scholar 

  • Chandio, A. A., Jiang, Y., Rauf, A., Ahmad, F., Amin, W., & Shehzad, K. (2020b). Assessment of formal credit and climate change impact on agricultural production in Pakistan: A time series ARDL modeling approach. Sustainability, 12(13), 5241.

    Article  Google Scholar 

  • Chandio, A. A., Jiang, Y., Abbas, Q., Amin, A., & Mohsin, M. (2020a). Does financial development enhance agricultural production in the long-run Evidence from China. Journal of Public Affairs. https://doi.org/10.1002/pa.2342

    Article  Google Scholar 

  • Chandio, A. A., Jiang, Y., Ahmad, F., Adhikari, S., & Ain, Q. U. (2021a). Assessing the impacts of climatic and technological factors on rice production: Empirical evidence from Nepal. Technology in Society, 66, 101607.

    Article  Google Scholar 

  • Chandio, A. A., Jiang, Y., Akram, W., Adeel, S., Irfan, M., & Jan, I. (2021b). Addressing the effect of climate change in the framework of financial and technological development on cereal production in Pakistan. Journal of Cleaner Production, 288, 125637.

    Article  Google Scholar 

  • Chung, E.-S., & Kim, Y. (2014). Development of fuzzy multi-criteria approach to prioritize locations of treated wastewater use considering climate change scenarios. Journal of Environmental Management, 146, 505–516.

    Article  Google Scholar 

  • Clark, S. (2020). Organic Farming and Climate Change: The Need for Innovation. Sustainability, 12(17), 7012.

    Article  Google Scholar 

  • Damane, M., & Sekantsi, L. P. (2018). The sources of unemployment in Lesotho. Modern Economy, 9(5), 937–965.

    Article  Google Scholar 

  • Das, M. R., & Hossain, M. A. (2019). Impact of agricultural loan disbursement and chemical fertilizer use on the rice production in Bangladesh. Bangladesh Journal of Public Administration, 27(2).

  • Deressa, T. T., Hassan, R. M., & Ringler, C. (2011). Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. Journal of Agricultural Science, 149(1), 23–31.

    Article  Google Scholar 

  • Devkota, N., & Paija, N. (2020). Impact of Climate Change on Paddy Production: Evidence from Nepal. Asian Journal of Agriculture and Development, 17, 63–78.

    Article  Google Scholar 

  • Dewan, T., & H.,. (2015). Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather & Climate Extremes, 7, 36–42.

    Article  Google Scholar 

  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431.

    Article  Google Scholar 

  • Ding, Q., Chen, X., Hilborn, R., & Chen, Y. (2017). Vulnerability to impacts of climate change on marine fisheries and food security. Marine Policy, 83, 55–61.

    Article  Google Scholar 

  • Elliott, K. A. (2015). Food Security in Developing Countries: Is there a role for the WTO? Center for Global Development.

  • Elliott, G., Rothenberg, T. J., & Stock, J. H. (1992). Efficient Tests for an Autoregressive Unit Root. Econometrica, 64(4), 813–836.

    Article  Google Scholar 

  • Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica Journal of the Econometric Society, 55, 251–276.

    Article  Google Scholar 

  • FAO. (2021). FAO Cereal Supply and Demand Brief. World cereal inventories in 2021/22 expected to rise for the first time since 2017/18. Retrieved from FAO Cereal Supply and Demand Brief | World Food Situation | Food and Agriculture Organization of the United Nations. Accessed on August 30, 2021.

  • FAOSTAT. (2019). FAOSTAT database collections. Rome.

  • Fatuase, A., & Ajibefun, I. (2014). Perception and Adaptation to Climate Change among Farmers in Selected Communities of Ekiti State. Nigeria. Gaziosmanpasa Niversitesi Ziraat Fakültesi Dergisi, 31(3), 100–113.

    Google Scholar 

  • Ghimire, R., & Huang, W. C. (2015). Household wealth and adoption of improved maize varieties in Nepal: A double-hurdle approach. Food Security, 7(6), 1321–1335.

    Article  Google Scholar 

  • Ghimire, R., & Huang, W.-C. (2016). Adoption pattern and welfare impact of agricultural technology: Empirical evidence from rice farmers in Nepal. Journal of South Asian Development, 11(1), 113–137.

    Article  Google Scholar 

  • Ghimire, R., Wen-Chi, H., & Shrestha, R. B. (2015). Factors affecting adoption of improved rice varieties among rural farm households in Central Nepal. Rice Science, 22(1), 35–43.

    Article  Google Scholar 

  • Gmann, H. (2015). How Much did Extreme Weather Events Impact Wheat Yields in Germany? - A Regionally Differentiated Analysis on the Farm Level. Procedia Environmental Sciences, 29, 119–120.

    Article  Google Scholar 

  • Government of Nepal – GoN (2020). Statistical information on Nepalese agriculture 2076/77 (2019/20).

  • Horrillo, A., Gaspar, P., & Escribano, M. (2020). Organic farming as a strategy to reduce carbon footprint in Dehesa agroecosystems: A case study comparing different livestock products. Animals, 10(1), 162. https://doi.org/10.3390/ani10010162

    Article  Google Scholar 

  • Im, E. S., Pal, J. S., & Eltahir, E. A. (2017). Deadly heat waves projected in the densely populated agricultural regions of South Asia. Science Advances, 3(8), e1603322.

    Article  Google Scholar 

  • International Renewable Energy Agency-IRENA (2020). How to transform the energy system and reduce carbon emissions. IRENA. Retrieved from https://www.irena.org/DigitalArticles/2019/Apr/How-To-Transform-Energy-System-And-Reduce-Carbon-Emissions. Accessed on December 11, 2021.

  • Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. Oxford Bulletin of Economics and Statistics, 52(2), 169–210.

    Article  Google Scholar 

  • Joshi, G. R., & Joshi, B. (2019). Climate change impact on agricultural sector of Nepal: Implications for adaptation and resilience building. Agricultural Transformation in Nepal (pp. 119–155). Springer.

  • Karmakar, N., Chakraborty, A., & Nanjundiah, R. S. (2017). Increased sporadic extremes decrease the intraseasonal variability in the Indian summer monsoon rainfall. Scientific Reports, 7(1), 1–7.

    Article  Google Scholar 

  • Khan, A., Ali, S., Shah, S. A., Khan, A., & Ullah, R. (2019). Impact of climate change on maize productivity in Khyber Pakhtunkhwa. Pakistan. Sarhad Journal of Agriculture, 35(2), 594–601.

    Google Scholar 

  • Khanal, U., Wilson, C., Lee, B. L., & Hoang, V. N. (2018). Climate change adaptation strategies and food productivity in Nepal: A counterfactual analysis. Climatic Change, 148(4), 575–590.

    Article  Google Scholar 

  • Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environment, Development and Sustainability, 23(1), 23–43.

    Article  Google Scholar 

  • Kumar, A., Takeshima, H., Thapa, G., Adhikari, N., Saroj, S., Karkee, M., & Joshi, P. (2020). Adoption and diffusion of improved technologies and production practices in agriculture: Insights from a donor-led intervention in Nepal. Land Use Policy, 95, 104621.

    Article  Google Scholar 

  • Kumar, P., Sahu, N. C., Kumar, S., & Ansari, M. A. (2021). Impact of climate change on cereal production: evidence from lower-middle-income countries. Environmental Science and Pollution Research, 1–15.

  • Kuttippurath, J., Murasingh, S., Stott, P. A., Sarojini, B. B., Jha, M. K., Kumar, P., & Pandey, P. C. (2021). Observed rainfall changes in the past century (1901–2019) over the wettest place on Earth. Environmental Research Letters, 16(2), 024018.

    Article  Google Scholar 

  • Langner, J. A., Zanon, A. J., Streck, N. A., Reiniger, L. R., Kaufmann, M. P., & Alves, A. F. (2019). Maize: Key agricultural crop in food security and sovereignty in a future with water scarcity. Revista Brasileira De Engenharia Agrícola e Ambiental, 23, 648–654.

    Article  Google Scholar 

  • Lu, S., Bai, X., Li, W., & Wang, N. (2019). Impacts of climate change on water resources and grain production. Technological Forecasting and Social Change, 143, 76–84.

    Article  Google Scholar 

  • MoAD,. (2019). Statistical information on Nepalese agriculture - Google scholar. Ministry of Agriculture and Livestock Development.

    Google Scholar 

  • MoF,. (2019). Economic survey: Fiscal year 2018/19. Ministry of Finance.

    Google Scholar 

  • Msowoya, K., Madani, K., Davtalab, R., Mirchi, A., & Lund, J. R. (2016). Climate Change Impacts on Maize Production in the Warm Heart of Africa. Water Resources Management, 30, 5299–5312. https://doi.org/10.1007/s11269-016-1487-3

    Article  Google Scholar 

  • Mulungu, K., Tembo, G., Bett, H., & Ngoma, H. (2021). Climate change and crop yields in Zambia: historical effects and future projections. Environment, Development and Sustainability, 1–22.

  • Nakano, Y., & Magezi, E. F. (2020). The impact of microcredit on agricultural technology adoption and productivity: Evidence from randomized control trial in Tanzania. World Development, 133, 104997. https://doi.org/10.1016/j.worlddev.2020.104997

    Article  Google Scholar 

  • Nkoro, E., & Uko, A. K. (2016). Autoregressive Distributed Lag (ARDL) cointegration technique: Application and interpretation. Journal of Statistical and Econometric Methods, 5(4), 63–91.

    Google Scholar 

  • NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2020, online January 2021. Retrieved on March 15, 2021 from https://www.ncdc.noaa.gov/sotc/global/202013.

  • NOAA National Centers for Environmental information, Climate at a Glance: Global Time Series, published December 2021, retrieved on December 18, 2021 from https://www.ncdc.noaa.gov/cag/

  • Nuss, E. T., & Tanumihardjo, S. A. (2010). Maize: A paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety, 9(4), 417–436.

    Article  CAS  Google Scholar 

  • Obeng, S. K., & Sakyi, D. (2017). Macroeconomic determinants of interest rate spreads in Ghana. African Journal of Economic and Management Studies, 8, 76–88.

    Article  Google Scholar 

  • Ozdemir, D. (2021). The Impact of Climate Change on Agricultural Productivity in Asian Countries: a heterogeneous panel data approach.

  • Özdoğan, M. (2011). Modeling the impacts of climate change on wheat yields in Northwestern Turkey. Agriculture, Ecosystems & Environment, 141(1–2), 1–12.

    Article  Google Scholar 

  • Pathak, S. (2021). Determinants of flood adaptation: Parametric and semiparametric assessment. Journal of Flood Risk Management, 14(2), e12699.

  • Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC. Cambridge University Press.

  • Pender, J., Hazell, P. (2000). Promoting sustainable development in less-favored areas. International Food Policy Research Institute Washington, DC.

  • Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326.

    Article  Google Scholar 

  • Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346.

    Article  Google Scholar 

  • Phukan, J., Pender, N. P., & Hardiman, O. (2007). Cognitive impairment in amyotrophic lateral sclerosis. The Lancet Neurology, 6(11), 994–1003.

    Article  CAS  Google Scholar 

  • Pickson, R. B., & Boateng, E. (2021). Climate change: a friend or foe to food security in Africa? Environment, Development and Sustainability, 1–26.

  • Pickson, R. B., He, G., & Boateng, E. (2021). Impacts of climate change on rice production: evidence from 30 Chinese provinces. Environment, Development and Sustainability, 1–19.

  • Pickson, R. B., He, G., Ntiamoah, E. B., & Li, C. (2020). Cereal production in the presence of climate change in China. Environmental Science and Pollution Research, 1–12.

  • Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., Lobell, D. B., Travasso, M. I. (2014). Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. http://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Chap7_FGDall.pdf.

  • Potgieter, A., Meinke, H., Doherty, A., Sadras, V. O., Hammer, G., & Crimp…, S. (2013). Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia. Climatic Change, 117(1–2), 163–179.

    Article  Google Scholar 

  • Rakshit, S., Hariprasanna, K., Gomashe, S., Ganapathy, K., Das, I., Ramana, O., Dhandapani, A., & Patil, J. (2014). Changes in Area, Yield Gains, and Yield Stability of Sorghum in Major Sorghum-Producing Countries, 1970 to 2009. Crop Science, 54(4), 1571–1584.

    Article  Google Scholar 

  • Rayamajhee, V., & Bohara, A. K. (2019). Do voluntary associations reduce hunger? An empirical exploration of the social capital-food security nexus among food impoverished households in western Nepal. Food Security, 11(2), 405–415.

    Article  Google Scholar 

  • Rayamajhee, V., Guo, W., & Bohara, A. K. (2020). The Impact of Climate Change on Rice Production in Nepal. Economics of Disasters and Climate Change, 5, 111–134.

    Article  Google Scholar 

  • Rayamajhee, V., Guo, W., & Bohara, A. K. (2021). The impact of climate change on rice production in Nepal. Economics of Disasters and Climate Change, 5(1), 111–134.

    Article  Google Scholar 

  • Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., & Wolf, J. (2018). Climate change impact on global potato production. European Journal of Agronomy, 100, 87–98.

    Article  Google Scholar 

  • Rehman, A., Chandio, A. A., Hussain, I., & Jingdong, L. (2019). Fertilizer consumption, water availability and credit distribution: Major factors affecting agricultural productivity in Pakistan. Journal of the Saudi Society of Agricultural Sciences, 18(3), 269–274.

    Article  Google Scholar 

  • Rehman, A., Ma, H., Irfan, M., & Ahmad, M. (2020). Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China. Environmental Science and Pollution Research, 27(23), 28768–28779.

    Article  CAS  Google Scholar 

  • Rohila, A. K., Maan, D., Kumar, A., & Kumar, K. (2017). Impact of agricultural practices on environment. Asian J. of Microbiol. Env. Sc, 19(2), 145–148.

    Google Scholar 

  • Ruszkiewicz, J. A., Tinkov, A. A., Skalny, A. V., Siokas, V., Dardiotis, E., Tsatsakis, A., Bowman, A. B., da Rocha, J. B., & Aschner, M. (2019). Brain diseases in changing climate. Environmental Research, 177, 108637.

    Article  CAS  Google Scholar 

  • Sanogo, I., & Amadou, M. M. (2010). Rice market integration and food security in Nepal: The role of cross-border trade with India. Food Policy, 35(4), 312–322.

    Article  Google Scholar 

  • Sarker, M. A. R., Alam, K., & Gow, J. (2014). Assessing the effects of climate change on rice yields: An econometric investigation using Bangladeshi panel data. Economic Analysis and Policy, 44(4), 405–416.

    Article  Google Scholar 

  • Shi, J., Visschers, V. H., Bumann, N., & Siegrist, M. (2018). Consumers’ climate-impact estimations of different food products. Journal of Cleaner Production, 172, 1646–1653.

    Article  Google Scholar 

  • Shrestha, R. P., & Nepal, N. (2016). An assessment by subsistence farmers of the risks to food security attributable to climate change in Makwanpur. Nepal. Food Security, 8(2), 1–11.

    Google Scholar 

  • Sossou, S., Igue, C. B., & Diallo, M. (2019). Impact of climate change on cereal yield and production in the Sahel: Case of Burkina Faso. Asian Journal of Agricultural Extension, Economics & Sociology, 37(4), 1–11.

    Article  Google Scholar 

  • Suvedi, M., Ghimire, R., & Kaplowitz, M. (2017). Farmers’ participation in extension programs and technology adoption in rural Nepal: A logistic regression analysis. The Journal of Agricultural Education and Extension, 23(4), 351–371.

    Article  Google Scholar 

  • Tao, F., Yokozawa, M., Xu, Y., Hayashi, Y., & Zhang, Z. (2006). Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology, 138(1–4), 82–92.

    Article  Google Scholar 

  • Tao, S., Monteiro, A. P. A., Thompson, I. M., Hayen, M. J., & Dahl, G. E. (2012). Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. Journal of Dairy Science, 95(12), 7128–7136.

    Article  CAS  Google Scholar 

  • Tao, M., Chen, L., Xiong, X., Zhang, M., Ma, P., Tao, J., & Wang, Z. (2014). Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmospheric Environment, 98, 417–425.

    Article  CAS  Google Scholar 

  • Tesfaye, K., Zaidi, P., Gbegbelegbe, S., Boeber, C., Getaneh, F., Seetharam, K., Erenstein, O., & Stirling, C. (2017). Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theoretical and Applied Climatology, 130(3), 959–970.

    Article  Google Scholar 

  • United Nation, United Nations in Western Europe – UN 2020. 2010–2019 confirmed as warmest decade in history.

  • Vaidya, S. (2020). Agriculture, data stories: Investment gap in agriculture. Nepal Outlook. Retrieved from https://nepaloutlook.com/data-stories/investment-gap-in-agriculture/. Accessed on December 18, 2021.

  • Van Nguyen, N., & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9.

    Article  Google Scholar 

  • Vij, S., Biesbroek, R., Groot, A., & Termeer, K. (2018). Changing climate policy paradigms in Bangladesh and Nepal. Environmental Science & Policy, 81, 77–85.

    Article  Google Scholar 

  • Waha, K., Krummenauer, L., Adams, S., Aich, V., Baarsch, F., Coumou, D., Fader, M., Hoff, H., Jobbins, G., & Marcus, R. (2017). Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Regional Environmental Change, 17(6), 1623–1638.

    Article  Google Scholar 

  • Warsame, A. A., Sheik-Ali, I. A., Ali, A. O., & Sarkodie, S. A. (2021). Climate change and crop production nexus in Somalia: an empirical evidence from ARDL technique. Environmental Science and Pollution Research, 28(160), 19838–19850.

    Article  Google Scholar 

  • World Bank. (2020). Population, total – Nepal. The World Bank. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL?locations=NP. Accessed on December 18, 2021.

  • Xie, W., Huang, J., Wang, J., Cui, Q., Robertson, R., & Chen, K. (2018). Climate change impacts on China's agriculture: The responses from market and trade. China Economic Review.

  • You, L., Rosegrant, M. W., Wood, S., & Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 149(6–7), 1009–1014.

    Article  Google Scholar 

  • Zaied, Y. B., & Cheikh, N. B. (2015). Long-run versus short-run analysis of climate change impacts on agricultural crops. Environmental Modeling & Assessment, 20(3), 259–271.

    Article  Google Scholar 

  • Zhai, S., Song, G., Qin, Y., Ye, X., & Lee, J. (2017). Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach. PLoS ONE, 12(9), e0184474.

    Article  Google Scholar 

  • Zhang, T., & Yao, H. (2013). Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data. International Journal of Climatology, 33(3), 699–708.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Ali Chandio or Waqar Akram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandio, A.A., Akram, W., Bashir, U. et al. Sustainable maize production and climatic change in Nepal: robust role of climatic and non-climatic factors in the long-run and short-run. Environ Dev Sustain 25, 1614–1644 (2023). https://doi.org/10.1007/s10668-022-02111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02111-1

Keywords

Navigation