Skip to main content

Advertisement

Log in

Environmental sensitivity and risk assessment in the Saharan Tunisian oasis agro-systems using the deepest water table source for irrigation: water quality and land management impacts

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In dry-hot areas, such as southern Tunisia, the availability of good water is very limited by the low scanty rainfall, the long dry periods and the high evaporation rate. Thus, to deal with these issues, information concerning the quality of irrigation water and the variability of groundwater quality across the oasis system from water well to the final runoff released into the natural environment, is required to evaluate the potential impacts on agricultural soil fertility and to assess the effects of land-use and agricultural practices in environmental conservation and natural resources exploitation. In the current study, 28 water samples have been collected from public wells along the irrigation scheme and drainage canals and have been analyzed. The obtained data prove that groundwater has large spatial variability (EC between 2.93 and 10.05 ms/cm and TDS between 1.95 and 8.15 g/L) caused by different influencing factors such as aquifer water quality, overexploitation, distribution system and evaporation processes. According to the used ionic ratios (SAR, KR, PI, MH, TH, SSP, ESP, etc..), the used waters are locally of permissible quality, while the majority fall unsuitable class to be used in irrigation with a maximum SAR of 18 at El Hamma region. The findings indicate that, besides the severe restrictions required for the use of these high mineralized resources, CI water quality shows a slight variability along irrigation scheme, which may provide additive water resources that may be reused in agriculture, the runoff released into the environment and the excess of irrigation water lost to evaporation process. The evaluation of chemical quality of drainage water may provide a scientific basis for the reuse of these waters to more efficient land management aiming to the sustainable development of oasis agriculture and the prevention of land degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

EC:

Electrical conductivity

SAR:

Sodium adsorption ratio

KR:

Kelly's ratio

PI:

Permeability index

MH:

Magnesium hazard

TH:

Total hardness

SSP:

Soluble sodium percent

ESP:

Exchangeable sodium percentage

CI:

Continental intercalaire

CT:

Complex terminal

SASS:

Système Aquifère du Sahara Septentrional

TDS:

Total dissolved solids

WQI:

Water quality index

HCA:

Hierarchical cluster analysis

CA:

Correlation analysis

PCA:

Principal component analysis

PDES:

Plan Directeur des Eaux du Sud

APIOS:

Amelioration des Perimètres Irrigués dans Les Oasis du Sud

CES:

Conservation des Eaux et du Sol

IWQI:

Irrigation water quality index

CWQI:

Canadian water quality index

OWQI:

Oregon water quality index

References

  • Aghazadeh, N., & Asghari Mogaddam, A. (2010). Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh Area, Northwest of Iran. Journal of Environmental Protection, 1, 30–40. https://doi.org/10.4236/jep.2010.11005.

  • Ahamed, A. J., Ananthakrishnan, S., Loganathan, K., & Manikandan, K. (2013). Assessment of groundwater quality for irrigation use in Alathur block, Perambalur district, Tamilnadu, South India. Applied Water Science, 3, 763–771.

    Article  CAS  Google Scholar 

  • Anazawa, K., & Ohmori, H. (2005). The hydrochemistry of surface waters in Andesitic Volcanic area, Norikura volcano, central Japan. Chemosphere, 59, 605–615. https://doi.org/10.1016/j.chemosphere.2004.10.018.

    Article  CAS  Google Scholar 

  • Apello, C. A. J., & Postma, D. (1994). Geochemistry, groundwaterand pollution (p. 683). Balkema.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper, 29, 1–144.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W., (1999). The water quality in agriculture, 2nd. Campina Grande: UFPB. Studies FAO Irrigation and drainage, 29.

  • Bahaj, T., Kacimi, I., Hilali, M., Kassou, N., & Mahboub, A. (2013). Preliminary study of the groundwater geochemistry in the sub-desert area in Morocco: Case of the Ziz-Ghris basins. Procedia Earth and Planetary Science, 7, 44–48.

    Article  CAS  Google Scholar 

  • Bauder, T. A., Waskom, R. M., & Davis, J. G. (2007). Irrigation water quality criteria. Colorado State University.

    Google Scholar 

  • Ben Brahim, F., Makni, J., & Bouri, S. (2012). Properties of geothermal resources in Kebilli region, southwestern Tunisia. Environmental Earth Sciences, 69, 885e897. https://doi.org/10.1007/s12665-012-1974-7

    Article  Google Scholar 

  • Besser, H., & Hamed, Y. (2021). Environmental impacts of land management on the sustainability of natural resources in Oriental Erg Tunisia, North Africa. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-01135-9

    Article  Google Scholar 

  • Besser, H., & Hamed, Y. (2019). Causes and risk evaluation of oil and brine contamination in the Lower Cretaceous Continental Intercalaire aquifer in the Kebili region of southern Tunisia using chemical fingerprinting techniques. Environmental Pollution, 253, 412–423.

    Article  CAS  Google Scholar 

  • Besser, H., Mokadem, N., Redhouania, B., Hadji, R., Hamad, O., & Hamed, Y. (2018). Goundwater mixing and geochemical assessment of low enthalpy resources in the geothermal field of Southwestern Tunisia. Euro-Mediterranean Journal for Environmental Integration. https://doi.org/10.1007/s41207-018-0055-z

    Article  Google Scholar 

  • Besser, H., Mokadem, N., Redhouania, B., Rhimi, N., Khelifi, F., Ayadi, Y., Omar, Z., Bouajila, A., & Hamed, Y. (2017). GIS based model evaluation of groundwater quality and estimation of soil salinization and land degradation risks in arid Mediterranean site (SW Tunisia). Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3148-0

    Article  Google Scholar 

  • Besser, H., Redhouania, B., Bedoui, S., Ayadi, Y., Khelifi, F., & Hamed, Y. (2019). Geochemical, isotopic and statistical monitoring of groundwater quality: Assessment of the potential environmental impacts of the highly polluted CI water in Southwestern Tunisia. Journal of African Earth Sciences, 153, 144–155.

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment (C.C.M.E) (2001). Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index 1.0. Technical Report, Canadian Council of Ministers of the environment winnipeg, MB, Canada.

  • Commissariat Régional du développement agricole C.R.D.A. (2018). Rapport interne.

  • Commissariat Régional du développement agricole C.R.D.A. (2019). Rapport interne.

  • Cude, C. G. (2001). Oregon water quality index: A tool for evaluating water quality management effectiveness. JAWRA Journal of the American Water Resources Association, 37, 125–137. https://doi.org/10.1111/j.1752-1688.2001.tb05480.x.

    Article  CAS  Google Scholar 

  • Dhaouadi, L., Sihem, B., Mkadmi, C., Mounzer, O., & Hedi, D. (2015). Etude Comparative des techniques d’irrigations sous palmier dattier dans les oasis de Dégache du Sud Tunisien. Journal of New Sciences Agriculture and Biotechnology, 18, 658–667.

  • Dhaouadi, L., Besser, H., Wassar, F., Kharbout, N., Ben Brahim, N., Wahba, M., & Kang, Y. (2020). Agriculture sustainability in arid lands of southern Tunisia: Ecological impacts of irrigation water quality and human practices. Irr&drai. https://doi.org/10.1002/ird.2492

    Article  Google Scholar 

  • Dhirendra, M. J., Kumar, A., & Agrawal, N. (2009). Assessment of the irrigation water quality of river ganga in Haridwar District. Rasayan Journal of Chemistry, 2, 285–292.

    Google Scholar 

  • Dłużewski, M., Kozłowski, R., & Szczucińska, A. (2017). Potential use of alluvial groundwater for irrigation in arid zones – Mhamid oasis (S Morocco). Ecological Chemistry and Engineering S, 24(1), 129–140.

    Article  CAS  Google Scholar 

  • Doneen, L. D. (1964). Water quality for agriculture (p. 48). University of California, Davis.

    Google Scholar 

  • Dunnette, D. A. (1979). A geographically variable water quality index used in Oregon. Journal of the Water Pollution Control Federation, 51(1), 53–61.

    CAS  Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonates in irrigated waters. Soil Science, 69, 127–128.

    Article  Google Scholar 

  • Edmunds, W. M., Guendouz, A., Mamou, A., Moulla, A., Shand, P., & Zouari, K. (2003). Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Applied Geochemistry, 18, 805–822.

    Article  CAS  Google Scholar 

  • Edmunds, W. M., Shand, P., Guendouz, A. H., Moulla, A. S., Mamou, A., Zouari, K. (1997). Recharge characteristics and groundwater quality of the Grand Erg Oriental basin. British Geological Survery, London final report.

  • El khoumsi, W., Hammani, A., Kuper, M., & Bouaziz, A. (2014). Deterioration of groundwater in arid environments: what impact in oasis dynamics? Case study of Tafilalet, Morocco. International Journal of Environmental, Ecological, Geological and Marine Engineering, 8(11), 689–695.

    Google Scholar 

  • Farnham, I. M., Johannesson, K. H., Singh, A. K., Hodge, V. F., & Stetzenbach, K. J. (2003). Factor analyticalapproaches for evaluating groundwater trace element chemistry data. AnalyticaChimicaActa, 490, 123–138.

    CAS  Google Scholar 

  • Gharbi, N., (2009).Aménagements hydrauliques et amélioration de la gestion de l’eau dans les oasis du sud. Gestion des ressources naturelles et développement durable des systèmes oasiens du Nefzaoua, Feb 2009, Douz, Tunisie. 5 p. CIRAD-00496036.

  • Giridharan, L., Venugopal, T., & Jayaprakash, M. (2007). Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. Environmental Monitoring and Assessment, 143, 161–178. https://doi.org/10.1007/s10661-007-9965-y

    Article  CAS  Google Scholar 

  • Gold, J., Rodgers, H., & Smith, V. (2003). What is the future for the human resource development professional? A UK perspective. Human Resource Development International, 6(4), 437–456.

    Article  Google Scholar 

  • Guendouz, A., Moulla, A. S., Edmunds, W., Shand, P., Poole, J., Zouari, K., & Mamou, A. (1997). Paleoclimatic information contained in groundwater of the grand erg oriental. N. Africa. In: Proceedings of Symposium. International Atomic Energy Agency, Vienna, 349.

  • Guettaf, M., Maoui, A., & Ihdene, Z. (2014). Assessment of water quality: A case study of the Seybouse River (North East of Algeria). Applied Water Science, 7, 1–13. https://doi.org/10.1007/s13201-014-0245-z.

    Article  CAS  Google Scholar 

  • Gupta, P. K., (2005). Methods in Environmental Analysis: Water, Soil and Air. Agrobios, Jodhpur, India, pp. 1–127.

  • Gupta, S. K., & Gupta, I. C. (1987). Management of saline soils and water. Oxford and IBM Publ.

    Google Scholar 

  • Hamed Y (2015) Les ressources hydriques en Tunisie et impact des changements climatiques. Editions europeennes universitaires, ISBN 978-9938-12-961-8

  • Hamed, Y., Ahmadi, R., Demdoum, A., Bouri, S., Gargouri, I., Dhia, H. B., AlGamal, S., Laouar, R., & Choura, A. (2014). Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: a case study of Gafsa mining basin-Southern Tunisia. Journal of African Earth Sciences, 100, 418–436. https://doi.org/10.1016/j.jafrearsci.2014.07.012

    Article  CAS  Google Scholar 

  • Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Bâali, B., & El Gayar, A. (2018). Climate impact on surface and groundwater in North Africa: A global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration, 3, 1–15. https://doi.org/10.1007/s41207-018-0067-8

    Article  Google Scholar 

  • Harmsen, J., Rulkens, W. H., Sims, R. C., Rijtema, P. E., & Zweers, A. J. (2007). Theory and Application of Land farming to Remediate Polycyclic Ar omatic Hydrocarbons and Mineral Oil-Contaminated Sediments: Beneficial Reuse. Journal of Environmental Quality, 36(4), 1112–1122.

    Article  CAS  Google Scholar 

  • Haj-Amor, Z., Tóth, T., Ibrahimi, K., & Bouri, S. (2017). Effects of excessive irrigation of date palm on soil salinization, shallow groundwater properties, and water use in a Saharan oasis. Environmental Earth Sciences., 76, 590. https://doi.org/10.1007/s12665-017-6935-8

    Article  CAS  Google Scholar 

  • Handa, B. K. (1964). Modified classification procedure for rating irrigation waters. Soil Science, 98, 313–314.

    Article  Google Scholar 

  • Hem, J. D., (1989). Study and interpretation of the chemical characteristics of natural water. U. S. Geological Survey, Water Supply, 1473–2254.

  • Hosseinifard, S. J., & Aminiyan, M. M., (2015). Hydrochemical characterization of groundwater qualityfor drinking and agricultural purposes: a case study in Rafsanjan Plain, Iran. Water Quality, Exposure and Health, pp 1–14.

  • Ishaku, J. M., Ahmed, A. S., & Abubakar, M. A. (2011). Assessment of groundwater quality using chemical indices and GIS mapping in Jada area, Northeastern Nigeria. Journal of Earth Sciences and Geotechnical Engineering, 1(1), 35–60.

    Google Scholar 

  • Kamel, S. (2013). Application of selected geothermometers to Continental Intercalaire thermal water in southern Tunisia. Geothermics, 41, 63–73. https://doi.org/10.1016/j.geothermics.2011.10.003.

  • Karanth, K. R. (1987). groundwater assessment development and management tata (p. 725). McGraw Hill publishing company Ltd.

    Google Scholar 

  • Karbout, N., Dhaouidi, L., Boughdiri, A., Jaoued, M., Moussa, M., & Bousnina, H. (2019). Qualitative analysis of the indicators of degradation of the Nefzaoui oases and quantitative study of their impacts on the socio-economic level of the region farmers. Journal of New Sciences, Agriculture and Biotechnology, 65(7), 4114–4124.

    Google Scholar 

  • Kelly, W. P. (1951). Alkali soils, their formation, properties and reclamation. Reinhold Publ.

    Google Scholar 

  • Larsen, H., & Ipsen, N. H., (1997). Water Pollution Control - A Guide to the Use of Water Quality Management Principles. United Nations Environment Programme, the Water Supply & Sanitation Collaborative Council and the World Health Organization.

  • Mass, (1990). Crop salt tolerance.Agricultural salinity assessment and management manual. In TanjiKK (ed) ASCE, New York, pp 262–304.

  • Meireles, A., Andrade, E. M., Chaves, L., Frischkorn, H., & Crisostomo, L. A. (2010). A new proposal ofthe classification of irrigation water. RevistaCiencia A Gronomica, 41(3), 349–357.

    Google Scholar 

  • Michael, A. M. (1992). Irrigation theory and practices (pp. 686–740). Vikash Publishing House Pvt. Ltd.

    Google Scholar 

  • Mohammed, M. N. (2011). Quality assessment of Tigris river by using water quality index for irrigation purpose. European Journal of Scientific Research, 57, 15–28.

    Google Scholar 

  • Mokadem, N., Demdoum, A., Hamed, Y., Bouri, S., Hadji, R., Boyce, A., Laouar, R., & Saad, A. (2016). Hydrogeochemical and stable isotope data of Groundwater of a multi-aquifer system: Northern Gafsa basin - Central Tunisia. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2015.11.010

    Article  Google Scholar 

  • Mokadem, N., Redhaounia, B., Besser, H., Ayadi, Y., Khelifi, F., Amor, H., Hamed, Y., & Bouri, S. (2018). Impact of climate change on groundwater and the extinction of ancient “Foggara” and springs systems in arid lands in North Africa: a case study in Gafsa basin (Central of Tunisia). Euro-Mediterranean Journal for Environmental Integration, 3, 28. https://doi.org/10.1007/s41207-018-0070-0.

  • Nagaraju, A., Sunil Kumar, K., & Thejaswi, A. (2014). Assessment of groundwater quality for irrigation:A case study from Bandalamottu lead mining area, untur District, Andhra Pradesh, SouthIndia. Applied Water Science, 4, 385–396. https://doi.org/10.1007/s13201-014-0154-1

    Article  CAS  Google Scholar 

  • Nahid, S., Haque, M. A., & Elahi, S. F. (2009). Evaluation of surface irrigation water quality in MuktagachaUpazila of Bangladesh. Songklanakarin Journal of Science and Technology, 31(2), 229–235.

    Google Scholar 

  • Nickson, R. T., McArthur, J., Shrestha, B., Kyaw-Myint, T. O., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20, 55–68. https://doi.org/10.1016/j.apgeochem.2004.06.004.

    Article  CAS  Google Scholar 

  • Ogunfowokan, A. O., Obisanya, J. F., & Ogunkoya, O. O. (2013). Salinity and sodium hazards of three streams of different agricultural land use systems in Ile-Ife, Nigeria. Applied Water Science, 3, 19–28.

    Article  CAS  Google Scholar 

  • Oster, J. D., (2001). Sustainable use of saline-sodic irrigation waters. California Plant and Soil Conference.

  • Paliwal, K. V., (1972). Irrigation with saline water.Monogram (2) (New series). New Delhi, IARI, 198.

  • Raju, N. J. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environmental Geology, 52, 1067–1074.

    Article  CAS  Google Scholar 

  • Ramesh, K., & Elango, L. (2012). Groundwater quality and its suitability for domestic and agriculturaluse in Tondiar river basin, Tamil Nadu, India. Environmental Monitoring and Assessment Journal, 184, 3887–3899.

    Article  CAS  Google Scholar 

  • Rao, B. K., Panchaksharjah, S., Patil, B. N., Narayana, A., & Kaiker, D. L. (1982). Chemical composition of irrigation waters from selected parts of Bijpur district, Karnataka. Mysore Journal of Agricultural Science, 16, 426–432.

    CAS  Google Scholar 

  • Richards, L. A., (1954). Diagnosis and improvement of saline and alkali soils. USDA Hand book, (60), 160.

  • Sarathbabu, P., & John, P. K. (2015). Assessment of Ground Water for Irrigation in Naguleru Sub Basin of Guntur District, Andhra Pradesh, India. International Journal of Recent Scientific Research, 6, 2947–2951.

    Google Scholar 

  • Schnoor, J. L., Licht, L. A., McCutcheon, S. C., Wolf, N. L., & Carreira, L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environmental Science and Technology, 29(7), 318A-A323.

    Article  CAS  Google Scholar 

  • Shahid, S., Chen, X., & Hazarika, M. K. (2006). Evaluation of groundwater quality for irrigation in Bangladesh using Geographic information system. Journal of Hydrology and Hydromechanics, 54, 3–14.

    CAS  Google Scholar 

  • Srivastava, P. K., Han, D., Gupta, M., & Mukherjee, S. (2012). Integrated framework for monitoring groundwater pollution using a geographical information system and multivariate analysis. Hydrological Sciences Journal, 57(7), 1453–1472.

    Article  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability fordrinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47, 1099–1110.

    Article  CAS  Google Scholar 

  • Swezey, C. (2003). The role of climate in the creation and destruction of continental stratigraphic records: An example from the northern margin of the Sahara Desert. https://doi.org/10.2110/pec.03.77.0207.

  • Szabolcs, I., & Darab, C., (1964). The influence of irrigation water of high sodium carbonate content onsoils. In Szabolics (Ed.), Proc 8th International Congress Soil Science Sodics Soils, Res InstSoil SciAgricChem Hungarian AcadSci, ISSS Trans II, (pp 802–812).

  • Talukdar, S., Gallango, O., & Ruggiero, A. (1988). Generation and migration of oil in the Maturin Subbasin, Eastern Venezuelan basin. Organic Geochemistry, 13(1–3), 537–547. https://doi.org/10.1016/0146-6380(88)90074-5.

  • Thorne, D. W., & Peterson, H. B. (1954). Irrigated soils. Constable and Company.

    Book  Google Scholar 

  • Tiwari, T. N., & Manzoor, A. (1988). River pollution in Kathmandu valley (Nepal) suitability of river water for irrigation. Indian Journal of Environmental Protection, 8(4), 269–274.

    CAS  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (2nd ed., p. 535). Wiley & Sons.

    Google Scholar 

  • U.S.S.L. (1954). Diagnosis and improvement of saline and alkaline soils. U.S. Dept. of Agriculture HandBook, 60, 160.

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of Water Quality Index for Groundwater Quality Assessment: Thirumanimuttar Sub-Basin, Tamilnadu, India. Environmental Monitoring and Assessment Journal, 171, 595–609.

    Article  CAS  Google Scholar 

  • Wadie, S. T., & Abduljalil, A. D. S. (2010). Assessment of hydrochemical quality of groundwater undersome urban areas within Sana‟a Secretariat. Eclética Química, 35(1), 77–84.

    Article  CAS  Google Scholar 

  • Wilcox, L.V., (1955). Classification and use of Irrigation water. US Dept of Agriculture, Washington, Circular, (969), 19

  • Zammouri, M., Siegfried, T., El Fahem, T., Kriâa, S., & Kinzelbach, W. (2007). Salinization of groundwater in the Nefzaoua oases region, Tunisia:Results of a regional scale hydrogeologic approach. Hydrogeology Journal, 15, 1357–1375.

    Article  CAS  Google Scholar 

  • Zhao, B., & Poh, C. L. (2008). Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics, 8(4), 874–881.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Dhaouadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaouadi, L., Besser, H., Karbout, N. et al. Environmental sensitivity and risk assessment in the Saharan Tunisian oasis agro-systems using the deepest water table source for irrigation: water quality and land management impacts. Environ Dev Sustain 24, 10695–10727 (2022). https://doi.org/10.1007/s10668-021-01878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01878-z

Keywords

Navigation