Skip to main content

Advertisement

Log in

Spatial and temporal rainfall variability and its controlling factors under an arid climate condition: case of Gabes Catchment, Southern Tunisia

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Precipitation is the principal component of the hydrologic cycle. This study examines the spatial and temporal rainfall variability in Gabes Catchment (southeastern Tunisia) by analyzing annual precipitation data in nine stations during the period extending from 1977 to 2015. Several multivariate statistical tools, essentially principal component analysis (PCA), hierarchical clustering analysis and multiple linear regression, are used to characterize spatial variability of rainfall and identify its major controlling factors. PCA resulted in four principal components explaining 70% of the total variance. Stations were clustered into three different groups based on topography, the proximity to the Mediterranean Sea, continentality and seasonality. Hierarchical clustering, applying Ward method, classified variables into two groups. A multiple regression model including 13 variables was developed, representing a suitable tool for predicting precipitation of the different stations spread throughout Gabes Catchment. The proposed model displays acceptable efficiency with an absolute prediction error of approximately 87%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data

The data used in this paper are provided by the Ministry of Agriculture of Tunisia Directorate General of Water Resources.

Abbreviations

HCA:

Hierarchical Clustering Analysis

P:

Annual rainfall

Paut:

Autumn rainfall

PC:

Principal component

PCA:

Principal component analysis

Pspr:

Spring rainfall

Psum:

Summer rainfall

Pwin:

Winter rainfall

Lat:

Latitude

Lon:

Longitude

Alt:

Altitude

dProx.Sea:

Distance to the Mediterranean Sea

P1, P2, P3, P4:

Classes of precipitation defined according to the number of rainy days of given rainfall depths

NjPtot:

Number of total rainy days

\({\Delta P}_{c}\) :

Rainfall variability for calibration model

MLR:

Multiple linear regressions

References

  • Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews Computational Statistics, 2, 433–459.

    Article  Google Scholar 

  • Alotaibi, K., Ghumman, A. R., Haider, H., Ghazaw, Y., & Shafiquzzaman, M. (2018). Future predictions of rainfall and temperature using GCM and ANN for Arid Regions: A case study for the Qassim Region Saudi Arabia. Water, 10, 1260.

    Article  Google Scholar 

  • Arslan, O. (2009). A GIS-based spatial-multivariate statistical analysis of water quality data in the Porsuk River, Turkey. Water Quality Research Journal of Canada, 44(3), 279–293.

    Article  CAS  Google Scholar 

  • Bodian, A., Ndiayeb, O., & Dacostac, H. (2016). Evolution des Caractéristiques des Pluies Journalières dans le Bassin Versant du Fleuve Sénégal: Avant et Après Rupture. Hydrological Sciences Journal, 61(5), 905–913.

    Google Scholar 

  • Bravo Cabrera, J. L., Azpra Romero, E., Zarraluqui Such, V., Gay García, C., & Estrada Porrúa, F. (2012). Cluster analysis for validated climatology stations using precipitation in Mexico. Atmósfera, 25(4), 339–354.

    Google Scholar 

  • Chifurira, R., & Chikobvu, D. (2014). A weighted multiple regression model to predict rainfall patterns: Principal component analysis approach. Mediterranean Journal of Social Sciences, 5(7), 34–42.

    Google Scholar 

  • Choubin, B., Malekian, A., Samadi, S., Khalighi-Sigaroodi, S., & Sajedi-Hosseini, F. (2017). An ensemble forecast of semi-arid rainfall using large-scale climate predictors. Meteorological Applications, 24(3), 376–386. https://doi.org/10.1002/met.1635

    Article  Google Scholar 

  • Darand, M., & Daneshvar, M. R. M. (2014). Regionalization of precipitation regimes in iran using principal component analysis and hierarchical clustering analysis. Environmental Processes, 1(4), 517–532.

    Article  Google Scholar 

  • DGRE. (1977–2015). Rainfall variability reports in Tunisia. Technical report. General Directorate of Water Resources, Tunisian Ministry of Agriculture and Water Resources, Tunisia.

  • Djibo, A. G., Karambiri, H., Seidou, O., Sittichok, K., Philippon, N., Paturel, J. E., & Saley, H. M. (2015). Linear and non-linear approaches for statistical seasonal rainfall forecast in the Sirba Watershed Region (SAHEL). Climate, 3(3), 727–752.

    Article  Google Scholar 

  • Ellouze, M., Azri, C., & Abida, H. (2009). Spatial variability of monthly and annual rainfall data over Southern Tunisia. Journal of Atmospheric Research, 93(4), 832–839.

    Article  Google Scholar 

  • Fowdur, S. C., Rughooputh, S. D. D. V., Cheeneebash, J., Boojhawon, R., & Gopaul, A. (2014). Rainfall analysis over Mauritius using principal component analysis. Environmental Management and Sustainable Development, 3(2), 94–108.

    Article  Google Scholar 

  • Fragoso, M., & Gomes, P. T. (2008). Classification of daily abundant rainfall patterns and associated large-scale atmospheric circulation types in Southern Portugal. International Journal of Climatology, 28(4), 537–544.

    Article  Google Scholar 

  • Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold Company Inc. (pp. 320). New York. ISBN 0-442-23050-8.

  • Gonzalez, M. H., SkansiI, M. M., & Losano, F. (2010). A statistical study of seasonal winter rainfall prediction in the Comahue region (Argentina). Atmósfera, 23(3), 277–294.

    Google Scholar 

  • IBM Corp. (2012). IBM SPSS Statistics for Windows,” Version 21.0. Armonk, NY.

  • Jemai, S., Ellouze, M., & Abida, H. (2017). Variability of precipitation using the wavelet approach: Case study of Watershed of Gabes in South-East Tunisia. Atmosphere, 8(9), 1–16.

    Article  Google Scholar 

  • Jemai, S., Ellouze, M., Agoubi, B., & Abida, H. (2016). Drought intensity and spatial variability in Gabes Watershed, south-eastern Tunisia. Journal of Water and Land Development, 31, 63–72.

    Article  Google Scholar 

  • Jemai, S., Kallel, A. & Abida, H. (2018). Drought distribution using the standardized precipitation index: case of Gabes Basin, South Tunisia. Arabian Journal of Geosciences, 11, 737. https://doi.org/10.1007/s12517-018-4053-x.

  • Kadioglu, M. (2000). Regional variability of seasonal precipitation over Turkey. International Journal of Climatology, 20, 1743–1760.

    Article  Google Scholar 

  • Kendall, M.G. (1975). Rank correlation methods. 4th Edition, Charles Griffin, (pp. 202). London.

  • Kipkorior, E. C. (2002). Analysis of rainfall climate on the Njemps Flats, Baringo District, Kenya. Journal of Arid Environments, 50(3), 445–458.

    Article  Google Scholar 

  • Kouassi, A. M., Kouamé, K. F., Koffi, Y. B., et al. (2010). Analyse de la variabilité climatique et de ses influences sur les régimes pluviométriques saisonniers en Afrique de l’Ouest : cas du bassin versant du N’zi (Bandama) en Côte d’Ivoire. Cybergeo: European Journal of Geography, Environnement, Nature, Paysage, 513, 29, http://journals.openedition.org/cybergeo/23388. Accessed 28 mai 2020.

  • Kovilage, M. P. (2020). Influence of lean-green practices on organizational sustainable performance. Journal of Asian Business and Economic Studies. https://doi.org/10.1108/JABES-11-2019-0115

    Article  Google Scholar 

  • Kumar, M., & Padhy, P. K. (2014). Multivariate statistical techniques and water quality assessment: Discourse and review on some analytical models. International Journal of Environmental Science, 5(3), 607–626.

    Google Scholar 

  • Lyra, G. B., Oliveira-Júnior, J. F., & Zeri, M. (2014). Cluster analysis applied to the spatial and temporal, variability of monthly rainfall in Alagoas state, Northeast of Brazil. International Journal of Climatology, 34, 3546–3558.

    Article  Google Scholar 

  • Manatsa, D., & Mukwada, G. (2015). Rainfall Mechanisms for the Dominant Rainfall Mode over Zimbabwe Relative to ENSO and/or IODZM. The Scientific World Journal, 2012, 1–15.

    Article  Google Scholar 

  • Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, 13, 163–171.

    Article  Google Scholar 

  • Mehta, D., & Yadav, S. M. (2021). An analysis of rainfall variability and drought over Barmer District of Rajasthan, Northwest India. Water Science and Technology Water Supply. https://doi.org/10.2166/ws.2021.053

    Article  Google Scholar 

  • Mourato, S., Moreira, M., & Corte-Real, J. (2009). Interannual variability of precipitation distribution patterns in Southern Portugal. International Journal of Climatology, 30(12), 1784–1794.

    Article  Google Scholar 

  • Muñoz-Díaz, D., & Rodrigo, F. S. (2004). Spatio-temporal patterns of seasonal rainfall in Spain (1912–2000) using cluster and principal component analysis: Comparison. Annals of Geophysics, 22, 1435–1448.

    Article  Google Scholar 

  • Nair, A., Joseph, K. A., & Nair, K. S. (2014). Spatio-temporal analysis of rainfall trends over a maritime state (Kerala) of India during the last 100 years. Atmospheric Environment, 88, 123–132.

    Article  CAS  Google Scholar 

  • Nasir, M. A., Huynh, T. L. D., & Tram, H. T. X. (2019). Role of financial development, economic growth & foreign direct investment in driving climate change: A case of emerging ASEAN. Journal of Environmental Management, 242, 131–141.

    Article  Google Scholar 

  • Navid, M., & Niloy, N. H. (2018). Multiple linear regressions for predicting rainfall for Bangladesh. Communications, 6(1), 1–4. https://doi.org/10.11648/j.com.20180601.11

    Article  Google Scholar 

  • Nouaceur, Z., & Musrrescu, O. (2016). Rainfall Variability and Trend Analysis of Annual Rainfall in North Africa. International Journal of Atmospheric Sciences. https://doi.org/10.1155/2016/7230450

    Article  Google Scholar 

  • Osmana, Y. Z., & Abdellatif, M. E. (2016). Improving accuracy of downscaling rainfall by combining predictions of different statistical downscale models. Water Science, 30(2), 61–75.

    Article  Google Scholar 

  • Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73–90.

    Article  Google Scholar 

  • Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R., Sumi, A., & Taylor, K. (2007). Climate models and their evaluation,” In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor & H. Miller, (Eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/ New York.

  • Refonaa, J., Lakshmi, M., Abbas, R., & Raziullha, M. (2019). Rainfall prediction using regression model. International Journal of Recent Technology and Engineering., 8(2S3), 2277–3878. https://doi.org/10.35940/ijrte.B1098.0782S319

    Article  Google Scholar 

  • Rencher, A. C. (1998). Multivariate statistical inference and applications. Wiley.

    Google Scholar 

  • Singh, C. V. (2006). Pattern characteristics of Indian monsoon rainfall using principal component analysis (PCA). Elsevier Atmospheric Research, 79(3–4), 317–326.

    Article  Google Scholar 

  • Soares dos Santos, T., Mendes, D., & Rodrigues Torres, R. (2016). Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America. Nonlinear Processes in Geophysics, 23(1), 13–20.

    Article  Google Scholar 

  • Soltani, S., & Modarres, R. (2006). Classification of Spatio-Temporal pattern of rainfall in iran using a hierarchical and divisive cluster analysis. Journal of Spatial Hydrology, 6(2), 1–12.

    Google Scholar 

  • Tatli, H., Dalfes, N., & Mente, S. (2004). A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology, 24, 161–188.

    Article  Google Scholar 

  • Tatli, H., Dalfes, N., & Mente, S. (2005). Surface air temperature variability over Turkey and its connection to large scale upper air circulation via multivariate techniques. International Journal of Climatology, 25, 331–350.

    Article  Google Scholar 

  • Vrochidou, A. E. K., & Tsanis, I. K. (2012). Assessing precipitation distribution impacts on droughts on the island of Crete. Natural Hazards and Earth Systems Sciences, 12, 1159–1171.

    Article  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Article  Google Scholar 

  • Wilks, D. S. (1995) Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press. (pp. 467). New York.

  • Wilson, L. J., & Vallée, M. (2002). The Canadian updateable model output statistics (UMOS) system: Design and development tests. Weather and Forecasting, 17, 206–222.

    Article  Google Scholar 

  • WMO. (1990). Guide to Climatological Practices. Publication No. 100. World Meteorological Organization, Geneva.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrine Jemai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemai, S., Kallel, A., Agoubi, B. et al. Spatial and temporal rainfall variability and its controlling factors under an arid climate condition: case of Gabes Catchment, Southern Tunisia. Environ Dev Sustain 24, 5496–5513 (2022). https://doi.org/10.1007/s10668-021-01668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01668-7

Keywords

Navigation