Skip to main content
Log in

Phycoremediation of automobile exhaust gases using green microalgae

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

12 November 2021 Editor's Note: Readers are alerted that the reliability of data presented in this manuscript is currently in question. Appropriate editorial action will be taken once this matter is resolved.

Abstract

In the present study, an effort has been made to utilize the microalgae Chlorella vulgaris to sequester automobile exhaust gas from a petroleum-based engine of a two-wheeler motorcycle. C. vulgaris was subjected to un-suspended/attached non-enclosure cultivation onto a silicone matrix coated on a stainless steel pipe, protracted to the motorcycle silencer outlet through which the exhaust gas passed out. The automobile exhaust gas contained 13% of carbon dioxide (CO2), 7.5% of carbon monoxide (CO), 0.2% of nitric oxide (NO), 0.08% of nitrogen dioxide (NO2), 0.1% of sulfur dioxide (SO2) and 0.05% of sulfur trioxide (SO3) concentrations, which were removed up to 65%, 59%, 66%, 68%, 65% and 67%, respectively, by C. vulgaris from the attached growth experiment. The present study results showed that the exhaust gases played a crucial role in inducing biomass and lipid yields up to ≥ 3.2 g/L and ≥ 1.1 g/L, respectively. The tolerance of C. vulgaris to the exhaust gas components’ toxicity and its efficiency in treating those gas constituents with simultaneous biomass and lipids yields was better than anticipated in the present study.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 12 November 2021

    Editor's Note: Readers are alerted that the reliability of data presented in this manuscript is currently in question. Appropriate editorial action will be taken once this matter is resolved.

Abbreviations

APHA:

American Public Health Association

GHG:

Greenhouse gases

CO2 :

Carbon dioxide

CO:

Carbon monoxide

NOx:

Oxides of nitrogen

NO:

Nitric oxide

NO2 :

Nitrogen dioxide

SOx:

Oxides of sulfur

SO2 :

Sulfur dioxide

SO3 :

Sulfur trioxide

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

OD:

Optical density

FAME:

Fatty acid methyl esters

References

  • American Public Health Association (APHA). (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: APHA.

    Google Scholar 

  • Barros, A. I., Gonçalves, A. L., & Simões, M. (2018). Microalgal/cyanobacterial biofilm formation on selected surfaces: the effects of surface physicochemical properties and culture media composition. Journal of Applied Phycology, 31, 375–387.

    Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    CAS  Google Scholar 

  • Cheah, W. Y., Show, P. L., Chang, J. S., Ling, T. C., & Juan, J. C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184, 190–201.

    CAS  Google Scholar 

  • Chen, W., Zhang, S., Rong, J., Li, X., Chen, H., He, C., et al. (2016). Effective biological DeNOx of industrial flue gas by the mixotrophic cultivation of an oil-producing green alga Chlorella sp. C2. Environmental Science and Technology, 50(3), 1620–1627.

    CAS  Google Scholar 

  • Chen, J., Zu, K., Wang, M. (2018). Experimental study on the plasma purification for diesel engine exhaust gas. In IOP conference series: Earth and environmental science, 113, 012–186.

  • Cheng, P. F., Ji, B., Gao, L., Zhang, W., Wang, J., & Liu, T. (2013). The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresource Technology, 138, 95–100.

    CAS  Google Scholar 

  • Costa, J. A. V., Linde, G. A., Atala, D. I. P., Mibielli, G. M., & Krüger, R. T. (2000). Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World Journal of Microbiology & Biotechnology, 16, 15–18.

    Google Scholar 

  • Cui, Y. (2013). Fundamentals in microalgae harvesting: From flocculation to self-attachment [Ph.D. Thesis]. Publisher: North Carolina State University; Raleigh.

  • De Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129, 439–445.

    Google Scholar 

  • Demirbas, M. F. (2011). Biofuels from algae for sustainable development. Applied Energy, 88, 3473–3480.

    CAS  Google Scholar 

  • Doucha, J., Straka, F., & Lıvansky, K. (2005). Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin–layer photobioreactor. Journal of Applied Phycology, 17, 403–412.

    Google Scholar 

  • Duarte, J. H., Fanka, L. S., & Costa, J. A. V. (2016). Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresource Technology, 214, 159–165.

    CAS  Google Scholar 

  • Elliott, M. A., Nebel, G. J., & Rounds, F. G. (1955). The composition of exhaust gases from diesel, gasoline and propane powered motor coaches. Journal of the Air Pollution Control Association, 5(2), 103–108.

    CAS  Google Scholar 

  • Fitton, A. (1956). The composition of exhaust gases from motor vehicles. Perspective Public Health, 76(10), 664–677.

    CAS  Google Scholar 

  • Fuentes-Grünewald, C., Graces, E., Alacid, E., Sampedro, N., Rossi, S., & Camp, J. (2012). Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. Journal of Industrial Microbiology and Biotechnology, 39, 207–216.

    Google Scholar 

  • Ganji, R., & Yenugula, V. N. (2017). Emission reduction in automobile engine exhaust using bio catalytic converter: An experimental study. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 14(6), 24–28.

    Google Scholar 

  • Gao, F., Yang, Z. H., Li, C., Zeng, G. M., Ma, D. H., & Zhou, L. (2015). A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresource Technology, 179, 8–12.

    CAS  Google Scholar 

  • Gross, M., Jarboe, D., & Wen, Z. (2015). Biofilm-based algal cultivation systems. Applied Microbiology and Biotechnology, 99, 5781–5789.

    CAS  Google Scholar 

  • Ho, S., Chen, C., Lee, D., & Chang, J. (2011). Perspectives on microalgal CO2–emission mitigation systems: A review. Biotechnology Advances, 29, 189–198.

    CAS  Google Scholar 

  • Hossain, N., & Mahlia, T. M. I. (2019). Progress in physicochemical parameters of microalgae cultivation for biofuel production. Critical Reviews in Biotechnology, 39, 835–859.

    Google Scholar 

  • Kao, C. Y., Chen, T. Y., Chang, Y. B., Chiu, T. W., Lin, H. Y., Chen, C. D., et al. (2014). Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresource Technology, 166, 485–493.

    CAS  Google Scholar 

  • Katarzyna, L., Sai, G., & Singh, O. A. (2015). Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs. Renewable and Sustainable Energy Reviews, 42, 1418–1427.

    CAS  Google Scholar 

  • Keffer, J., & Kleinheinz, G. (2002). Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. Journal of Industrial Microbiology and Biotechnology, 29, 275–280.

    CAS  Google Scholar 

  • Kodo, K., Kodo, Y., Tsuruoka, M. (2000). U.S. Patent No. 6,083,740. Washington, DC: U.S. Patent and Trademark Office.

  • Lara-Gil, J. A., Alvarez, M. M., & Pacheco, A. (2014). Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems. Journal of Applied Phycology, 26, 357–368.

    CAS  Google Scholar 

  • Lara-Gil, J. A., Senes-Guerrero, C., & Pacheco, A. (2016). Cement flue gas as a potential source of nutrients during CO2 mitigation by microalgae. Algal Research, 17, 285–292.

    Google Scholar 

  • Li, F. F., Yang, Z. H., Zeng, R., Yang, G., Chang, X., Yang, J. B., et al. (2011). Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Industrial and Engineering Chemistry Research, 50(10), 6496–6502.

    CAS  Google Scholar 

  • Lin, Y. H., Leu, J. Y., Lan, C. R., Lin, P. H., & Chang, F. L. (2003). Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photobioreactor. Chemosphere, 53, 779–787.

    CAS  Google Scholar 

  • Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99, 4717–4722.

    CAS  Google Scholar 

  • Maeda, K., Owada, M., Kimura, N., Omata, K., & Karube, I. (1996). CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Conversion and Management, 36, 717–720.

    Google Scholar 

  • Mata, T. M., Martins, A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.

    CAS  Google Scholar 

  • Osorio, J. H. M., Pinto, G., Pollio, A., Frunzo, L., Lens, P. N. L., & Esposito, G. (2019). Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresources and Bioprocessing, 6(1), 27.

    Google Scholar 

  • Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Simões, M. (2012). Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16, 3043–3053.

    CAS  Google Scholar 

  • Pooja, K., Srikanth, D., & Himabindu, V. (2015). Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-015-5264.

    Article  Google Scholar 

  • Rajendran, A., & Hu, B. (2016). Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures. Biotechnology for Biofuels, 9, 112.

    Google Scholar 

  • Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467.

    CAS  Google Scholar 

  • Rosli, S. S., Lim, J. W., Jumbri, K., Lam, M. K., Uemura, Y., Ho, C. D., et al. (2019). Modeling to enhance attached microalgal biomass growth onto fluidized beds packed in nutrients-rich wastewater whilst simultaneously biofixing CO2 into lipid for biodiesel production. Energy Conversion and Management, 185, 1–10.

    CAS  Google Scholar 

  • Sadeghizadeh, A., Moghaddasi, L., & Rahimi, R. (2017). CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. Bioresource Technology, 243, 441–447.

    CAS  Google Scholar 

  • Singh, H. M., Kothari, R., Gupta, R., & Tyagi, V. V. (2019). Bio-fixation of flue gas from thermal power plants with algal biomass: Overview and research perspectives. Journal of Environmental Management, 2245, 519–539.

    Google Scholar 

  • Singh, S. P., & Singh, P. (2014). Effect of CO2 concentration on algal growth: A review. Renewable and Sustainable Energy Reviews, 38, 172–179.

    CAS  Google Scholar 

  • Sirmerova, M., Prochazkova, G., Siristova, L., Kolska, Z., & Branyik, T. (2013). Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. Journal of Applied Phycology, 25, 1687–1695.

    CAS  Google Scholar 

  • Songolzadeh, M., Soleimani, M., Ravanchi, M. T., & Songolzadeh, R. (2014). Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions. The Scientific World Journal. https://doi.org/10.1155/2014/828131.

    Article  Google Scholar 

  • Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718.

    CAS  Google Scholar 

  • Xu, Y., Hellier, P., Purton, S., Baganz, F., & Ladommatos, N. (2016). Algal biomass and diesel emulsions: An alternative approach for utilizing the energy content of microalgal biomass in diesel engines. Applied Energy, 172, 80–95.

    CAS  Google Scholar 

  • Yadav, G., Dash, S. K., & Sen, R. (2019). A biorefinery for valorization of industrial wastewater and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Science of the Total Environment, 688, 129–135.

    CAS  Google Scholar 

  • Yoo, C., Jun, S. Y., Lee, J. Y., Ahn, C. Y., & Oh, H. M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101, 71–74.

    Google Scholar 

  • Zhou, X., Bai, M., Zhang, Z., Deng, S., & Huang, G. (2003). Treatment of automotive exhaust gases by high speed electrons. Journal of Electrostatics, 57, 209–216.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Himabindu Vurimindi, Professor, Centre for Alternative Energy Options, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, kukatpally, Hyderabad-500085, Telangana, India, for her constant encouragement and technical support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Kandimalla.

Ethics declarations

Conflict of interest

The authors, namely Pooja Kandimalla, Priyanka Vatte and Chandra Sekhar Rao Bandaru, of this manuscript entitled: “Phycoremediation of automobile exhaust gases using green microalgae” certify that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandimalla, P., Vatte, P. & Bandaru, C.S.R. Phycoremediation of automobile exhaust gases using green microalgae. Environ Dev Sustain 23, 6301–6322 (2021). https://doi.org/10.1007/s10668-020-00873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00873-0

Keywords

Navigation